February 2024

Horizons and Null Infinity: A Fugue in 4 voices

Black hole horizons in equilibrium and null infinity of asymptotically flat space-times are null 3-manifolds but have very different physical connotations. We first show that they share a large number of geometric properties, making them both weakly isolated horizons. We then use this new unified perspective to unravel the origin of the drastic differences in the physics they contain. Interestingly, the themes are woven together in a manner reminiscent of voices in a fugue.

Minimum Detection Efficiencies for Loophole-free Genuine Nonlocality Tests

The certification of quantum nonlocality, which has immense significance in architecting device-independent technologies, confronts severe experimental challenges. Detection loophole, originating from the unavailability of perfect detectors, is one of the major issues amongst them. In the present study we focus on the minimum detection efficiency (MDE) required to detect various forms of genuine nonlocality, originating from the type of causal constraints imposed on the involved parties. In this context, we demonstrate that the MDE needed to manifest the recently suggested $T_2$-type nonlocality deviates significantly from perfection. Additionally, we have computed the MDE necessary to manifest Svetlichny’s nonlocality, with state-independent approach markedly reducing the previously established bound. Finally, considering the inevitable existence of noise we demonstrate the robustness of the imperfect detectors to certify $T_2$-type nonlocality.

Carrollian $Lw_{1+infty}$ representation from twistor space

We construct an explicit realization of the action of the $Lw_{1+infty}$ loop algebra on fields at null infinity. This action is directly derived by Penrose transform of the geometrical action of $Lw_{1+infty}$ symmetries in twistor space, ensuring that it forms a representation of the algebra. Finally, we show that this action coincides with the canonical action of $Lw_{1+infty}$ Noether charges on the asymptotic phase space.