To obtain Bell statistics from hybrid states composed of finite- and infinite-dimensional systems, we propose a hybrid measurement scheme, in which the continuous mode is measured using the generalized pseudospin operators, while the finite (two)-dimensional system is measured in the usual Pauli basis. Maximizing the Bell expression with these measurements leads to the violations of local realism which is referred to as hybrid nonlocality. We demonstrate the utility of our strategy in a realistic setting of cavity quantum electrodynamics, where an atom interacts with a single mode of an electromagnetic field under the Jaynes-Cummings Hamiltonian. We dynamically compute the quenched averaged value of hybrid nonlocality in imperfect situations by incorporating disorder in the atom-cavity coupling strength. In the disordered case, we introduce two kinds of measurement scenarios to determine the Bell statistics -- in one situation, experimentalists can tune the optimal settings according to the interaction strength while such controlled power is absent in the other case. In contrast to the oscillatory behavior observed in the ordered case, the quenched averaged violation saturates to a finite value in some parameter regimes in the former case, thereby highlighting an advantage of disordered systems. We also examine the connection between Wigner negativity and hybrid nonlocality.