Light-matter interaction in the ultrastrong coupling regime can be used to generate exotic ground states with two-mode squeezing and may be of use for quantum enhanced sensing. Current demonstrations of ultrastrong coupling have been performed in fundamentally nonlinear systems. We report a cavity optomechanical system that operates in the linear coupling regime, reaching a maximum coupling of $g_x/Omega_x=0.55pm 0.02$. Such a system is inherently unstable, which may in the future enable strong mechanical squeezing.