Accurate information processing is crucial both in technology and in nature. To achieve it, any information processing system needs an initial supply of resources away from thermal equilibrium. Here we establish a fundamental limit on the accuracy achievable with a given amount of nonequilibrium resources. The limit applies to arbitrary information processing tasks and arbitrary information processing systems subject to the laws of quantum mechanics. It is easily computable and is expressed in terms of an entropic quantity, which we name reverse entropy, associated to a time reversal of the information processing task under consideration. The limit is achievable for all deterministic classical computations and for all their quantum extensions. As an application, we establish the optimal tradeoff between nonequilibrium and accuracy for the fundamental tasks of storing, transmitting, cloning, and erasing information. Our results set a target for the design of new devices approaching the ultimate efficiency limit, and provide a framework for demonstrating thermodynamical advantages of quantum devices over their classical counterparts.