Discretizing parametrized systems: the magic of Ditt-invariance

Discretizing parametrized systems: the magic of Ditt-invariance

Carlo Rovelli
The Centre de Physique Théorique – UMR 7332 – CNRS and Aix-Marseille Université and Université de Toulon & The University of Western Ontario and Rotman Institute for Philosophy & Perimeter Institute for Theoretical Physics




Peculiar phenomena appear in the discretization of a system invariant under reparametrization. The structure of the continuum limit is markedly different from the usual one, as in lattice QCD. First, the continuum limit does not require tuning a parameter in the action to a critical value. Rather, there is a regime where the system approaches a sort of asymptotic topological invariance ("Ditt-invariance"). Second, in this regime the expansion in the number of discretization points provides a good approximation to the transition amplitudes. These phenomena are relevant for understanding the continuum limit of quantum gravity. I illustrate them here in the context of a simple system.