The QISS Initiative is supported by a grant from the John Templeton Foundation.

Authors: Timothée Hoffreumon and Ognyan Oreshkov
Year: 2021

We develop an extension of the process matrix (PM) framework for correlations between quantum operations with no causal order that allows multiple rounds of information exchange for each party compatibly with the assumption of well-defined causal order of events locally. We characterise the higher-order process describing such correlations, which we name the multi-round process matrix (MPM), and formulate a notion of causal nonseparability for it that extends the one for standard PMs. We show that in the multi-round case there are novel manifestations of causal nonseparability that are not captured by a naive application of the standard PM formalism: we exhibit an instance of an operator that is both a valid PM and a valid MPM, but is causally separable in the first case and can violate causal inequalities in the second case due to the possibility of using a side channel.

Authors: Lin-Qing Chen
Year: 2021

Through the analysis of null symplectic structure, we derive the condition for integrable Virasoro generators on the covariant phase space of axisymmetric Killing horizons. A weak boundary condition selects a special relationship between the two temperatures for the putative CFT. When the integrability is satisfied for both future and past horizons, the two central charges are equal. At the end we discuss the physical implications.