February 2020

Cyclic Quantum Causal Models

Causal reasoning is essential to science, yet quantum theory challenges it. Quantum correlations violating Bell inequalities defy satisfactory causal explanations within the framework of classical causal models. What is more, a theory encompassing quantum systems and gravity is expected to allow causally nonseparable processes featuring operations in indefinite causal order, defying that events be causally ordered at all. The first challenge has been addressed through the recent development of intrinsically quantum causal models, allowing causal explanations of quantum processes — provided they admit a definite causal order, i.e. have an acyclic causal structure. This work addresses causally nonseparable processes and offers a causal perspective on them through extending quantum causal models to cyclic causal structures. Among other applications of the approach, it is shown that all unitarily extendible bipartite processes are causally separable and that for unitary processes, causal nonseparability and cyclicity of their causal structure are equivalent.

Quantum Bandits

We consider the quantum version of the bandit problem known as {em best arm identification} (BAI). We first propose a quantum modeling of the BAI problem, which assumes that both the learning agent and the environment are quantum; we then propose an algorithm based on quantum amplitude amplification to solve BAI. We formally analyze the behavior of the algorithm on all instances of the problem and we show, in particular, that it is able to get the optimal solution quadratically faster than what is known to hold in the classical case.

Quantum Temporal Superposition: the case of QFT

Quantum field theory is completely characterized by the field correlations between spacetime points. In turn, some of these can be accessed by locally coupling to the field simple quantum systems, a.k.a. particle detectors. In this work, we consider what happens when a quantum-controlled superposition of detectors at different space-time points is used to probe the correlations of the field. We show that, due to quantum interference effects, two detectors can gain information on field correlations which would not be otherwise accessible. This has relevant consequences for information theoretic quantities, like entanglement and mutual information harvested from the field. In particular, the quantum control allows for extraction of entanglement in scenarios where this is otherwise provably impossible.