Papers New

Experimental super-Heisenberg quantum metrology with indefinite gate order

The precision of quantum metrology is widely believed to be restricted by the Heisenberg limit, corresponding to a root mean square error that is inversely proportional to the number of independent processes probed in an experiment, N. In the past, some proposals have challenged this belief, for example using non-linear interactions among the probes. However, these proposals turned out to still obey the Heisenberg limit with respect to other relevant resources, such as the total energy of the probes. Here, we present a photonic implementation of a quantum metrology protocol surpassing the Heisenberg limit by probing two groups of independent processes in a superposition of two alternative causal orders. Each process creates a phase space displacement, and our setup is able to estimate a geometric phase associated to two sets of N displacements with an error that falls quadratically with N. Our results only require a single-photon probe with an initial energy that is independent of N. Using a superposition of causal orders outperforms every setup where the displacements are probed in a definite order. Our experiment features the demonstration of indefinite causal order in a continuous-variable system, and opens up the experimental investigation of quantum metrology setups boosted by indefinite causal order.

On the Inevitable Lightness of Vacuum

In this essay, we present a new understanding of the cosmological constant problem, built upon the realization that the vacuum energy density can be expressed in terms of a phase space volume. We introduce a UV-IR regularization which implies a relationship between the vacuum energy and entropy. Combining this insight with the holographic bound on entropy then yields a bound on the cosmological constant consistent with observations. It follows that the universe is large, and the cosmological constant is naturally small, because the universe is filled with a large number of degrees of freedom.

The Temporal Asymmetry of Influence is Not Statistical

We argue that the temporal asymmetry of influence is not merely the result of thermodynamics: it is a consequence of the fact that modal structure of the universe must admit only processes which cannot give rise to contradictions. We appeal to the process matrix formalism developed in the field of quantum foundations to characterise processes which are compatible with local free will whilst ruling out contradictions, and argue that this gives rise to ‘consistent chaining’ requirements that explain the temporal asymmetry of influence. We compare this view to the perspectival account of causation advocated by Price and Ramsey.

On the analogies between gravitational and electromagnetic radiative energy

We give a conceptual exposition of aspects of gravitational radiation, especially in relation to energy. Our motive for doing so is that the strong analogies with electromagnetic radiation seem not to be widely enough appreciated. In particular, we reply to some recent papers in the philosophy of physics literature that seem to deny that gravitational waves carry energy. Our argument is based on two points: (i) that for both electromagnetism and gravity, in the presence of material sources, radiation is an effective concept, unambiguously emerging only in certain regimes or solutions of the theory; and (ii) similarly, energy conservation is only unambiguous in certain regimes or solutions of general relativity. Crucially, the domain of (i), in which radiation is meaningful, has a significant overlap with the domain of (ii), in which energy conservation is meaningful. Conceptually, the overlap of regimes is no coincidence: the long-standing question about the existence of gravitational waves was settled precisely by finding a consistent way to articulate their energy and momentum.

The Topology of Causality

We provide a unified operational framework for the study of causality, non-locality and contextuality, in a fully device-independent and theory-independent setting. Our work has its roots in the sheaf-theoretic framework for contextuality by Abramsky and Brandenburger, which it extends to include arbitrary causal orders (be they definite, dynamical or indefinite). We define a notion of causal function for arbitrary spaces of input histories, and we show that the explicit imposition of causal constraints on joint outputs is equivalent to the free assignment of local outputs to the tip events of input histories. We prove factorisation results for causal functions over parallel, sequential, and conditional sequential compositions of the underlying spaces. We prove that causality is equivalent to continuity with respect to the lowerset topology on the underlying spaces, and we show that partial causal functions defined on open sub-spaces can be bundled into a presheaf. In a striking departure from the Abramsky-Brandenburger setting, however, we show that causal functions fail, under certain circumstances, to form a sheaf. We define empirical models as compatible families in the presheaf of probability distributions on causal functions, for arbitrary open covers of the underlying space of input histories. We show the existence of causally-induced contextuality, a phenomenon arising when the causal constraints themselves become context-dependent, and we prove a no-go result for non-locality on total orders, both static and dynamical.

The Geometry of Causality

We provide a unified operational framework for the study of causality, non-locality and contextuality, in a fully device-independent and theory-independent setting. We define causaltopes, our chosen portmanteau of “causal polytopes”, for arbitrary spaces of input histories and arbitrary choices of input contexts. We show that causaltopes are obtained by slicing simpler polytopes of conditional probability distributions with a set of causality equations, which we fully characterise. We provide efficient linear programs to compute the maximal component of an empirical model supported by any given sub-causaltope, as well as the associated causal fraction. We introduce a notion of causal separability relative to arbitrary causal constraints. We provide efficient linear programs to compute the maximal causally separable component of an empirical model, and hence its causally separable fraction, as the component jointly supported by certain sub-causaltopes. We study causal fractions and causal separability for several novel examples, including a selection of quantum switches with entangled or contextual control. In the process, we demonstrate the existence of “causal contextuality”, a phenomenon where causal inseparability is clearly correlated to, or even directly implied by, non-locality and contextuality.

Classification of causally complete spaces on 3 events with binary inputs

We present an exhaustive classification of the 2644 causally complete spaces of input histories on 3 events with binary inputs, together with the algorithm used to find them. This paper forms the supplementary material for a trilogy of works: spaces of input histories, our dynamical generalisation of causal orders, are introduced in “The Combinatorics of Causality”; the sheaf-theoretic treatment of causal distributions is detailed in “The Topology of Causality”; the polytopes formed by the associated empirical models are studied in “The Geometry of Causality”.

Are Entropy Bounds Epistemic?

Entropy bounds have played an important role in the development of holography as an approach to quantum gravity, so in this article we seek to gain a better understanding of the covariant entropy bound. We observe that there is a possible way of thinking about the covariant entropy bound which would suggest that it encodes an epistemic limitation rather than an objective count of the true number of degrees of freedom on a light-sheet; thus we distinguish between ontological and epistemic interpretations of the covariant bound. We consider the consequences that these interpretations might have for physics and we discuss what each approach has to say about gravitational phenomena. Our aim is not to advocate for either the ontological or epistemic approach in particular, but rather to articulate both possibilities clearly and explore some arguments for and against them.

Complete Graphical Language for Hermiticity-Preserving Superoperators

Universal and complete graphical languages have been successfully designed for pure state quantum mechanics, corresponding to linear maps between Hilbert spaces, and mixed states quantum mechanics, corresponding to completely positive superoperators. In this paper, we go one step further and present a universal and complete graphical language for Hermiticity-preserving superoperators. Such a language opens the possibility of diagrammatic compositional investigations of antilinear transformations featured in various physical situations, such as the Choi-Jamio{l}kowski isomorphism, spin-flip, or entanglement witnesses. Our construction relies on an extension of the ZW-calculus exhibiting a normal form for Hermitian matrices.

Graph subshifts

We propose a definition of graph subshifts of finite type that can be seen as extending both the notions of subshifts of finite type from classical symbolic dynamics and finitely presented groups from combinatorial group theory. These are sets of graphs that are defined by forbidding finitely many local patterns. In this paper, we focus on the question whether such local conditions can enforce a specific support graph, and thus relate the model to classical symbolic dynamics. We prove that the subshifts that contain only infinite graphs are either aperiodic, or feature no residual finiteness of their period group, yielding non-trivial examples as well as two natural undecidability theorems.