November 2023

Black Hole Entropy and Planckian Discreteness

A brief overview of the discovery that macroscopic black holes are thermodynamical systems is presented. They satisfy the laws of thermodynamics and are associated with a temperature and an entropy equal to one quarter of their horizon area in Planck units. They emit black body radiation and slowly evaporate as a consequence of Heisenberg’s uncertainty principle. The problem of understanding the microscopic source of their large entropy, as well as the nature of their final fate after evaporation, are discussed from the perspective of approaches to quantum gravity that predict discreteness at the Planck scale. We review encouraging first steps in computing black hole entropy and briefly discuss their implications for the black hole information puzzle.

Quantum teleportation of a genuine vacuum-one-photon qubit generated via a quantum dot source

Quantum state teleportation represents a pillar of quantum information and a milestone on the roadmap towards quantum networks with a large number of nodes. Successful photonic demonstrations of this protocol have been carried out employing different qubit encodings. However, demonstrations in the Fock basis encoding are challenging, due to the impossibility of creating a coherent superposition of vacuum-one photon states on a single mode with linear optics. Previous realizations using such an encoding strongly relied on ancillary modes of the electromagnetic field, which only allowed the teleportation of subsystems of entangled states. Here, we enable quantum teleportation of genuine vacuum-one photon states avoiding ancillary modes, by exploiting coherent control of a resonantly excited semiconductor quantum dot in a micro-cavity. Within our setup, we can teleport vacuum-one-photon qubits and perform entanglement swapping in such an encoding. Our results may disclose new potentialities of quantum dot single-photon sources for quantum information applications.

Flexible Error Mitigation of Quantum Processes with Data Augmentation Empowered Neural Model

Neural networks have shown their effectiveness in various tasks in the realm of quantum computing. However, their application in quantum error mitigation, a crucial step towards realizing practical quantum advancements, has been restricted by reliance on noise-free statistics. To tackle this critical challenge, we propose a data augmentation empowered neural model for error mitigation (DAEM). Our model does not require any prior knowledge about the specific noise type and measurement settings and can estimate noise-free statistics solely from the noisy measurement results of the target quantum process, rendering it highly suitable for practical implementation. In numerical experiments, we show the model’s superior performance in mitigating various types of noise, including Markovian noise and Non-Markovian noise, compared with previous error mitigation methods. We further demonstrate its versatility by employing the model to mitigate errors in diverse types of quantum processes, including those involving large-scale quantum systems and continuous-variable quantum states. This powerful data augmentation-empowered neural model for error mitigation establishes a solid foundation for realizing more reliable and robust quantum technologies in practical applications.