August 2021

James Hartle
University of California

Living in a superposition

This talk will describe a model quantum universe consisting of a very large box containing a screen with two slits and an observer (us) that can pass through the slits. We apply the modern quantum mechanics of closed systems to calculate the probabilities for alternative histories of how we move through the universe and what we see. After passing through the screen with the slits, the quantum state of the universe is a superposition of classically distinguishable histories. We are then living in a superposition. Some frequently asked questions about such situations are answered using this model. In particular we will discuss whether or not if we are living in a superposition we would in some way feel it.

Giulio Chiribella
The University of Hong Kong

Quantum operations with indefinite time direction

The standard operational framework of quantum theory is time-asymmetric. This asymmetry reflects the capabilities of ordinary agents, who are able to deterministically pre-select the states of quantum systems, but not to deterministically post-select the outcomes of quantum measurements. However, the fundamental dynamics of quantum particles is time-symmetric, and is compatible with a broader class of operations where pre-selections and post-selections are combined in general ways that do not presuppose a definite direction of time. In this talk I introduce a framework for quantum operations with indefinite time direction, providing an example, called the quantum time flip, where an unknown, time-symmetric process is accessed in a coherent superposition of two alternative time directions. To highlight the potential of quantum operations with indefinite time direction, I will show a game where a hypothetical agent with access to the quantum flip can in principle outperform all agents who operate in a definite time direction.

Bob Coecke
Cambridge Quantum Computing

From Quantum Linguistics to Spacetime Linguistics, and Cognition

In earlier work, sometimes referred to as quantum linguistics [NewScientist], or as grammatical quantum field theory [by quantum gravity specialist Louis Crane], we for the first time combined grammatical structure with the distributional meanings of machine learning [CSC], which are typically represented in an inner-product space. The key insight was that grammar as well as more general linguistic structure perfectly matches the diagrams of categorical quantum mechanics [CKbook]. Our recipe was not restricted to inner-product space representations, for example, we also used density matrices, and we can also use spacetime as a representation of meanings. In fact, much in language has direct spatio-temporal connotations, either direct or metaphorical, e.g. prepositions like in, after, above etc. In joint work with Vincent Wang we constructed a linguistic model of spacetime, and how it extends to account for many more cognitive features [ConcSpacI] e.g. shape, taste, colour etc. We will argue that linguistic structure is really an interaction/process logic of things happening in the world out there. Hence this work could be a stepping stone to an alternative formalism for combining quantum structure with spacetime, at the crossroads of AI. This is joint work With Vincent Wang.

REFERENCES: [NewScientist] J. Aron. Quantum links let computers read. New Scientist nr 2790, pages 10-11. [CSC] B. Coecke, M. Sadrzadeh, and S. Clark. Mathematical foundations for a compositional distributional model of meaning. In: A Festschrift for Jim Lambek, volume 36 of Linguistic Analysis, pages 345–384. 2010. arxiv:1003.4394. [CKbook] B. Coecke and A. Kissinger. Picturing Quantum Processes. A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, 2017. [ConcSpacI] J. Bolt, B. Coecke, F. Genovese, M. Lewis, D. Marsden, and R. Piedeleu. Interacting conceptual spaces I: Grammatical composition of concepts. In: Concepts and their Applications, Synthese Library. 2018. arXiv:1703.08314