Random-Receiver Quantum Communication
We introduce the task of random-receiver quantum communication, in which a sender transmits a quantum message to a receiver chosen from a list of n spatially separated parties. The choice of receiver is unknown to the sender, but is known by the n parties, who coordinate their actions by exchanging classical messages. In normal conditions, random-receiver quantum communication requires a noiseless quantum communication channel from the sender to each of the n receivers. In contrast, we show that random-receiver quantum communication can take place through entanglement-breaking channels if the order of such channels is controlled by a quantum bit that is accessible through quantum measurements. Notably, this phenomenon cannot be mimicked by allowing free quantum communication between the sender and any subset of k