The Grover search as a naturally occurring phenomenon
We provide first evidence that under certain conditions, 1/2-spin fermions may naturally behave like a Grover search, looking for topological defects in a material. The theoretical framework is that of discrete-time quantum walks (QW), i.e. local unitary matrices that drive the evolution of a single particle on the lattice. Some QW are well-known to recover the $(2+1)$–dimensional Dirac equation in continuum limit, i.e. the free propagation of the 1/2-spin fermion. We study two such Dirac QW, one on the square grid and the other on a triangular grid reminiscent of graphene-like materials. The numerical simulations show that the walker localises around the defects in $O(sqrt{N})$ steps with probability $O(1/log{N})$, in line with previous QW search on the grid. The main advantage brought by those of this paper is that they could be implemented as `naturally occurring’ freely propagating particles over a surface featuring topological—without the need for a specific oracle step. From a quantum computing perspective, however, this hints at novel applications of QW search : instead of using them to look for `good’ solutions within the configuration space of a problem, we could use them to look for topological properties of the entire configuration space.