January 2021

Energy-mass equivalence from Maxwell equations

Since the appearance of Einstein’s paper {em”On the Electrodynamics of Moving Bodies”} and the birth of special relativity, it is understood that the theory was basically coded within Maxwell’s equations. The celebrated mass-energy equivalence relation, $E=mc^2$, is derived by Einstein using thought experiments involving the kinematics of the emission of light (electromagnetic energy) and the relativity principle. Text book derivations often follow paths similar to Einstein’s, or the analysis of the kinematics of particle collisions interpreted from the perspective of different inertial frames. All the same, in such derivations the direct dynamical link with hypothetical fundamental fields describing matter (e.g. Maxwell theory or other) is overshadowed by the use of powerful symmetry arguments, kinematics, and the relativity principle. Here we show that the formula can be derived directly form the dynamical equations of a massless matter model confined in a bo(which can be thought of as a toy model of a composite particle). The only assumptions in the derivation are that the field equations hold and the energy-momentum tensor admits a universal interpretation in arbitrary coordinate systems. The mass-energy equivalence relation follows from the inertia or (taking the equivalence principle for granted) weight of confined field radiation. The present derivation offers an interesting pedagogical perspective on the formula providing a simple toy model on the origin of mass and a natural bridge to the foundations of general relativity.

Spacetime Quantum Reference Frames and superpositions of proper times

In general relativity, the description of spacetime relies on idealised rods and clocks, which identify a reference frame. In any concrete scenario, reference frames are associated to physical systems, which are ultimately quantum in nature. A relativistic description of the laws of physics hence needs to take into account such quantum reference frames (QRFs), through which spacetime can be given an operational meaning. Here, we introduce the notion of a spacetime QRF, associated to a quantum particle in spacetime. Such formulation has the advantage of treating space and time on equal footing, and of describing the dynamical evolution of a set of quantum systems from the perspective of another quantum system, where the evolution parameter coincides with the proper time of the particle taken as the QRF. Crucially, the proper times in two different QRFs are not related by a standard transformation, but they might be in a quantum superposition. Concretely, we consider N relativistic quantum particles in a weak gravitational field and introduce a timeless formulation in which the global state of the N particles appears “frozen”, but the dynamical evolution is recovered in terms of relational quantities. The position and momentum Hilbert space of the particles is used to fithe QRF via a transformation to the local frame of the particle such that the metric is locally inertial at the origin of the QRF. The internal Hilbert space corresponds to the clock space, keeping the proper time in the local frame of the particle. This fully relational construction shows how the remaining particles evolve from the perspective of the QRF and includes the Page-Wootters mechanism for non interacting clocks when the external degrees of freedom are neglected. Finally, we observe a quantum superposition of gravitational redshifts and a quantum superposition of special-relativistic time dilations in the QRF.

Symmetries of quantum evolutions

A cornerstone of quantum mechanics is the characterisation of symmetries provided by Wigner’s theorem. Wigner’s theorem establishes that every symmetry of the quantum state space must be either a unitary transformation, or an antiunitary transformation. Here we extend Wigner’s theorem from quantum states to quantum evolutions, including both the deterministic evolution associated to the dynamics of closed systems, and the stochastic evolutions associated to the outcomes of quantum measurements. We prove that every symmetry of the space of quantum evolutions can be decomposed into two state space symmetries that are either both unitary or both antiunitary. Building on this result, we show that it is impossible to extend the time reversal symmetry of unitary quantum dynamics to a symmetry of the full set of quantum evolutions. Our no-go theorem implies that any time symmetric formulation of quantum theory must either restrict the set of the allowed evolutions, or modify the operational interpretation of quantum states and processes. Here we propose a time symmetric formulation of quantum theory where the allowed quantum evolutions are restricted to a suitable set, which includes both unitary evolution and projective measurements, but excludes the deterministic preparation of pure states. The standard operational formulation of quantum theory can be retrieved from this time symmetric version by introducing an operation of conditioning on the outcomes of past experiments.

Controlling wave-particle duality with quantum entanglement

Wave-particle duality and entanglement are two fundamental characteristics of quantum mechanics. All previous works on experimental investigations in wave{particle properties of single photons (or single particles in general) show that a well-defined interferometer setting determines a well-defined property of single photons. Here we take a conceptual step forward and control the wave-particle property of single photons with quantum entanglement. By doing so, we experimentally test the complementarity principle in a scenario, in which the setting of the interferometer is not defined at any instance of the experiment, not even in principle. To achieve this goal, we send the photon of interest (S) into a quantum Mach-Zehnder interferometer (MZI), in which the output beam splitter of the MZI is controlled by the quantum state of the second photon (C), who is entangled with a third photon (A). Therefore, the individual quantum state of photon C is undefined, which implements the undefined settings of the MZI for photon S. This is realized by using three cascaded phase-stable interferometers for three photons. There is typically no well-defined setting of the MZI, and thus the very formulation of the wave-particle properties becomes internally inconsistent.

Entanglement-asymmetry correspondence for internal quantum reference frames

In the quantization of gauge theories and quantum gravity, it is crucial to treat reference frames such as rods or clocks not as idealized external classical relata, but as internal quantum subsystems. In the Page-Wootters formalism, for example, evolution of a quantum system S is described by a stationary joint state of S and a quantum clock, where time-dependence of S arises from conditioning on the value of the clock. Here, we consider (possibly imperfect) internal quantum reference frames R for arbitrary compact symmetry groups, and show that there is an exact quantitative correspondence between the amount of entanglement in the invariant state on RS and the amount of asymmetry in the corresponding conditional state on S. Surprisingly, this duality holds exactly regardless of the choice of coherent state system used to condition on the reference frame. Averaging asymmetry over all conditional states, we obtain a simple representation-theoretic expression that admits the study of the quality of imperfect quantum reference frames, quantum speed limits for imperfect clocks, and typicality of asymmetry in a unified way. Our results shed light on the role of entanglement for establishing asymmetry in a fully symmetric quantum world.

Controlling wave-particle duality with quantum entanglement

Wave-particle duality and entanglement are two fundamental characteristics of quantum mechanics. All previous works on experimental investigations in wave{particle properties of single photons (or single particles in general) show that a well-defined interferometer setting determines a well-defined property of single photons. Here we take a conceptual step forward and control the wave-particle property of single photons with quantum entanglement. By doing so, we experimentally test the complementarity principle in a scenario, in which the setting of the interferometer is not defined at any instance of the experiment, not even in principle. To achieve this goal, we send the photon of interest (S) into a quantum Mach-Zehnder interferometer (MZI), in which the output beam splitter of the MZI is controlled by the quantum state of the second photon (C), who is entangled with a third photon (A). Therefore, the individual quantum state of photon C is undefined, which implements the undefined settings of the MZI for photon S. This is realized by using three cascaded phase-stable interferometers for three photons. There is typically no well-defined setting of the MZI, and thus the very formulation of the wave-particle properties becomes internally inconsistent.

Entanglement-asymmetry correspondence for internal quantum reference frames

In the quantization of gauge theories and quantum gravity, it is crucial to treat reference frames such as rods or clocks not as idealized external classical relata, but as internal quantum subsystems. In the Page-Wootters formalism, for example, evolution of a quantum system S is described by a stationary joint state of S and a quantum clock, where time-dependence of S arises from conditioning on the value of the clock. Here, we consider (possibly imperfect) internal quantum reference frames R for arbitrary compact symmetry groups, and show that there is an exact quantitative correspondence between the amount of entanglement in the invariant state on RS and the amount of asymmetry in the corresponding conditional state on S. Surprisingly, this duality holds exactly regardless of the choice of coherent state system used to condition on the reference frame. Averaging asymmetry over all conditional states, we obtain a simple representation-theoretic expression that admits the study of the quality of imperfect quantum reference frames, quantum speed limits for imperfect clocks, and typicality of asymmetry in a unified way. Our results shed light on the role of entanglement for establishing asymmetry in a fully symmetric quantum world.

Determinism Beyond Time Evolution

Physicists are increasingly beginning to take seriously the possibility of laws outside the traditional time-evolution paradigm; yet our understanding of determinism is still predicated on a forwards time-evolution picture, making it manifestly unsuited to the diverse range of research programmes in modern physics. In this article, we use a constraint-based framework to set out a generalization of determinism which does not presuppose temporal directedness, distinguishing between strong, weak and delocalised holistic determinism. We discuss some interesting consequences of these generalized notions of determinism, and we show that this approach sheds new light on the long-standing debate surrounding the nature of objective chance.

Determinism Beyond Time Evolution

Physicists are increasingly beginning to take seriously the possibility of laws outside the traditional time-evolution paradigm; yet our understanding of determinism is still predicated on a forwards time-evolution picture, making it manifestly unsuited to the diverse range of research programmes in modern physics. In this article, we use a constraint-based framework to set out a generalization of determinism which does not presuppose temporal directedness, distinguishing between strong, weak and delocalised holistic determinism. We discuss some interesting consequences of these generalized notions of determinism, and we show that this approach sheds new light on the long-standing debate surrounding the nature of objective chance.