June 2023

Flavio Del Santo
University of Geneva & Constructor UniversityPotentiality realism: Classical and quantum indeterminism

We will discuss an interpretation of physics named “potentiality realism”. This view, which can be applied to classical as well as to quantum physics, regards potentialities (i.e. intrinsic, objective propensities for individual events to obtain) as elements of reality, thereby complementing the actual values taken by physical variables. This allows one to naturally reconcile realism …

Flavio Del Santo
University of Geneva & Constructor UniversityPotentiality realism: Classical and quantum indeterminism
Read More »

Relational interpretation of quantum mechanics and Alexander Bogdanov’s worldview

There is a surprising parallel between the conceptual step taken by the theoretical physicists who discovered quantum mechanics in the 1920s and the philosophical work of Alexander Bogdanov. Both were under the direct cultural influence of the ideas of Ernst Mach. Even more surprisingly, there are aspects of the current debate on the physical interpretation of the quantum formalism that closely mirror the Lenin-Bogdanov debate, in particular on the confusion between subjectivity and relationality. It seems to me that the ideas of Alexander Bogdanov can still bring clarity and be fertile today when applied to open issues in the foundations of physics.

Matrix Mechanics Mis-Prized: Max Born’s Belated Nobelization

We examine evaluations of the contributions of Matrix Mechanics and Max Born to the formulation of quantum mechanics from Heisenberg’s Helgoland paper of 1925 to Born’s Nobel Prize of 1954. We point out that the process of evaluation is continuing in the light of recent interpretations of the theory that deemphasize the importance of the wave function.

Relational interpretation of quantum mechanics and Alexander Bogdanov’s worldview

There is a surprising parallel between the conceptual step taken by the theoretical physicists who discovered quantum mechanics in the 1920s and the philosophical work of Alexander Bogdanov. Both were under the direct cultural influence of the ideas of Ernst Mach. Even more surprisingly, there are aspects of the current debate on the physical interpretation of the quantum formalism that closely mirror the Lenin-Bogdanov debate, in particular on the confusion between subjectivity and relationality. It seems to me that the ideas of Alexander Bogdanov can still bring clarity and be fertile today when applied to open issues in the foundations of physics.

Matrix Mechanics Mis-Prized: Max Born’s Belated Nobelization

We examine evaluations of the contributions of Matrix Mechanics and Max Born to the formulation of quantum mechanics from Heisenberg’s Helgoland paper of 1925 to Born’s Nobel Prize of 1954. We point out that the process of evaluation is continuing in the light of recent interpretations of the theory that deemphasize the importance of the wave function.

Sejny summer institute 2023

6-16 July 2023 The Sejny Summer Institute is addressed to curious junior researchers (graduate students, post-docs, etc) from different areas of the foundations of physics (mathematics, theoretical and experimental physics, computer science, philosophy), willing to engage in active and open-minded discussions. Far from the format of traditional conferences and subject-specific workshops, the Sejny Summer Institute …

Sejny summer institute 2023 Read More »

Temporal witnesses of non-classicality in a macroscopic biological system

Exciton transfer along a polymer is essential for many biological processes, for instance light harvesting in photosynthetic biosystems. Here we apply a new witness of non-classicality to this phenomenon, to conclude that, if an exciton can mediate the coherent quantum evolution of a photon, then the exciton is non-classical. We then propose a general qubit model for the quantum transfer of an exciton along a polymer chain, also discussing the effects of environmental decoherence. The generality of our results makes them ideal candidates to design new tests of quantum features in complex bio-molecules.

Temporal witnesses of non-classicality in a macroscopic biological system

Exciton transfer along a polymer is essential for many biological processes, for instance light harvesting in photosynthetic biosystems. Here we apply a new witness of non-classicality to this phenomenon, to conclude that, if an exciton can mediate the coherent quantum evolution of a photon, then the exciton is non-classical. We then propose a general qubit model for the quantum transfer of an exciton along a polymer chain, also discussing the effects of environmental decoherence. The generality of our results makes them ideal candidates to design new tests of quantum features in complex bio-molecules.

A toy model provably featuring an arrow of time without past hypothesis

The laws of Physics are time-reversible, making no qualitative distinction between the past and the future — yet we can only go towards the future. This apparent contradiction is known as the `arrow of time problem’. Its resolution states that the future is the direction of increasing entropy. But entropy can only increase towards the future if it was low in the past, and past low entropy is a very strong assumption to make, because low entropy states are rather improbable, non-generic. Recent works, however, suggest we can do away with this so-called `past hypothesis’, in the presence of reversible dynamical laws featuring expansion. We prove that this is the case for a toy model, set in a 1+1 discrete spacetime. It consists in graphs upon which particles circulate and interact according to local reversible rules. Some rules locally shrink or expand the graph. Generic states always expand; entropy always increases — thereby providing a local explanation for the arrow of time.