June 2020

Stable Facts, Relative Facts

Facts happen at every interaction, but they are not absolute: they are relative to the systems involved in the interaction. Stable facts are those whose relativity can effectively be ignored. In this work, we describe how stable facts emerge in a world of relative facts and discuss their respective roles in connecting quantum theory and the world. The distinction between relative and stable facts resolves the difficulties pointed out by the no-go theorems of Frauchiger and Renner, Brukner, Bong et. al.. Basing the ontology of the theory on relative facts clarifies the role of decoherence in bringing about the classical world and solves the apparent incompatibility between the `linear evolution’ and `projection’ postulates.

Edge modes of gravity — I: Corner potentials and charges

This is the first paper in a series devoted to understanding the classical and quantum nature of edge modes and symmetries in gravitational systems. The goal of this analysis is to: i) achieve a clear understanding of how different formulations of gravity provide non-trivial representations of different sectors of the corner symmetry algebra, and ii) set the foundations of a new proposal for states of quantum geometry as representation states of this corner symmetry algebra. In this first paper we explain how different formulations of gravity, in both metric and tetrad variables, share the same bulk symplectic structure but differ at the corner, and in turn lead to inequivalent representations of the corner symmetry algebra. This provides an organizing criterion for formulations of gravity depending on how big the physical symmetry group that is non-trivially represented at the corner is. This principle can be used as a “treasure map” revealing new clues and routes in the quest for quantum gravity. Building up on these results, we perform a detailed analysis of the corner symplectic potential and symmetries of Einstein-Cartan-Holst gravity in [1], use this to provide a new look at the simplicity constraints in [2], and tackle the quantization in [3].

Contextuality in entanglement-assisted one-shot classical communication

We consider the problem of entanglement-assisted one-shot classical communication. In the zero-error regime, entanglement can increase the one-shot zero-error capacity of a family of classical channels following the strategy of Cubitt et al., Phys. Rev. Lett. 104, 230503 (2010). This strategy uses the Kochen-Specker theorem which is applicable only to projective measurements. As such, in the regime of noisy states and/or measurements, this strategy cannot increase the capacity. To accommodate generically noisy situations, we examine the one-shot success probability of sending a fixed number of classical messages. We show that preparation contextuality powers the quantum advantage in this task, increasing the one-shot success probability beyond its classical maximum. Our treatment extends beyond Cubitt et al. and includes, for example, the experimentally implemented protocol of Prevedel et al., Phys. Rev. Lett. 106, 110505 (2011). We then show a mapping between this communication task and a corresponding nonlocal game. This mapping generalizes the connection with pseudotelepathy games previously noted in the zero-error case. Finally, after motivating a constraint we term context-independent guessing, we show that contextuality witnessed by noise-robust noncontextuality inequalities obtained in R. Kunjwal, Quantum 4, 219 (2020), is sufficient for enhancing the one-shot success probability. This provides an operational meaning to these inequalities and the associated hypergraph invariant, the weighted max-predictability, introduced in R. Kunjwal, Quantum 3, 184 (2019). Our results show that the task of entanglement-assisted one-shot classical communication provides a fertile ground to study the interplay of the Kochen-Specker theorem, Spekkens contextuality, and Bell nonlocality.