July 2022

Quantum networks with coherent routing of information through multiple nodes

Large-scale communication networks, such as the internet, rely on routing packets of data through multiple intermediate nodes to transmit information from a sender to a receiver. In this paper, we develop a model of a quantum communication network that routes information simultaneously along multiple paths passing through intermediate stations. We demonstrate that a quantum routing approach can in principle extend the distance over which information can be transmitted reliably. Surprisingly, the benefit of quantum routing also applies to the transmission of classical information: even if the transmitted data is purely classical, delocalising it on multiple routes can enhance the achievable transmission distance. Our findings highlight the potential of a future quantum internet not only for achieving secure quantum communication and distributed quantum computing but also for extending the range of classical data transmission.

Interference in quantum field theory: detecting ghosts with phases

We discuss the implications of the principle of locality for interference in quantum field theory. As an example, we consider the interaction of two charges via a mediating quantum field and the resulting interference pattern, in the Lorenz gauge. Using the Heisenberg picture, we propose that detecting relative phases or entanglement between two charges in an interference experiment is equivalent to accessing empirically the gauge degrees of freedom associated with the so-called ghost (scalar) modes of the field in the Lorenz gauge. These results imply that ghost modes are measurable and hence physically relevant, contrary to what is usually thought. They also raise interesting questions about the relation between the principle of locality and the principle of gauge-invariance. Our analysis applies also to linearised quantum gravity in the harmonic gauge, and hence has implications for the recently proposed entanglement-based witnesses of non-classicality in gravity.

Quantum States of Fields for Quantum Split Sources

Field mediated entanglement experiments probe the quantum superposition of macroscopically distinct field configurations. We show that this phenomenon can be described by using a transparent quantum field theoretical formulation of electromagnetism and gravity in the field basis. The strength of such a description is that it explicitly displays the superposition of macroscopically distinct states of the field. In the case of (linearised) quantum general relativity, this formulation exhibits the quantum superposition of geometries giving rise to the effect.

Quantum States of Fields for Quantum Split Sources

Field mediated entanglement experiments probe the quantum superposition of macroscopically distinct field configurations. We show that this phenomenon can be described by using a transparent quantum field theoretical formulation of electromagnetism and gravity in the field basis. The strength of such a description is that it explicitly displays the superposition of macroscopically distinct states of the field. In the case of (linearised) quantum general relativity, this formulation exhibits the quantum superposition of geometries giving rise to the effect.

Quantum States of Fields for Quantum Split Sources

Field mediated entanglement experiments probe the quantum superposition of macroscopically distinct field configurations. We show that this phenomenon can be described by using a transparent quantum field theoretical formulation of electromagnetism and gravity in the field basis. The strength of such a description is that it explicitly displays the superposition of macroscopically distinct states of the field. In the case of (linearised) quantum general relativity, this formulation exhibits the quantum superposition of geometries giving rise to the effect.

Markov Chain Monte Carlo methods for graph refinement in Spinfoam Cosmology

We study the behaviour of the Lorentzian Engle-Pereira-Rovelli-Livine spinfoam amplitude with homogeneous boundary data, under a graph refinement going from five to twenty boundary tetrahedra. This can be interpreted as a wave function of the universe, for which we compute boundary geometrical operators, correlation functions and entanglement entropy. The numerical calculation is made possible by adapting the Metropolis-Hastings algorithm, along with recently developed computational methods appropriate for the deep quantum regime. We confirm that the transition amplitudes are stable against such refinement. We find that the average boundary geometry does not change, but the new degrees of freedom correct the quantum fluctuations of the boundary and the correlations between spatial patches. The expectation values are compatible with their geometrical interpretation and the correlations between neighbouring patches decay when computed across different spinfoam vertices.

Markov Chain Monte Carlo methods for graph refinement in Spinfoam Cosmology

We study the behaviour of the Lorentzian Engle-Pereira-Rovelli-Livine spinfoam amplitude with homogeneous boundary data, under a graph refinement going from five to twenty boundary tetrahedra. This can be interpreted as a wave function of the universe, for which we compute boundary geometrical operators, correlation functions and entanglement entropy. The numerical calculation is made possible by adapting the Metropolis-Hastings algorithm, along with recently developed computational methods appropriate for the deep quantum regime. We confirm that the transition amplitudes are stable against such refinement. We find that the average boundary geometry does not change, but the new degrees of freedom correct the quantum fluctuations of the boundary and the correlations between spatial patches. The expectation values are compatible with their geometrical interpretation and the correlations between neighbouring patches decay when computed across different spinfoam vertices.

Free Polycategories for Unitary Supermaps of Arbitrary Dimension

We provide a construction for holes into which morphisms of abstract symmetric monoidal categories can be inserted, termed the polyslot construction pslot[C], and identify a sub-class srep[C] of polyslots that are single-party representable. These constructions strengthen a previously introduced notion of locally-applicable transformation used to characterize quantum supermaps in a way that is sufficient to re-construct unitary supermaps directly from the monoidal structure of the category of unitaries. Both constructions furthermore freely reconstruct the enriched polycategorical semantics for quantum supermaps which allows to compose supermaps in sequence and in parallel whilst forbidding the creation of time-loops. By freely constructing key compositional features of supermaps, and characterizing supermaps in the finite-dimensional case, polyslots are proposed as a suitable generalization of unitary-supermaps to infinite dimensions and are shown to include canonical examples such as the quantum switch. Beyond specific applications to quantum-relevant categories, a general class of categorical structures termed path-contraction groupoids are defined on which the srep[C] and pslot[C] constructions are shown to coincide.

Diffuse emission from black hole remnants

We point out that conservation of information implies that remnants produced at the end of black hole evaporation should radiate in the low-frequency spectrum. We model this emission and derive properties of the diffuse radiation emitted by an otherwise dark population of such objects. We show that for early universe black holes the frequency and energy density of this radiation, which are in principle measurable, suffice to estimate the remnant density.

Diffuse emission from black hole remnants

We point out that conservation of information implies that remnants produced at the end of black hole evaporation should radiate in the low-frequency spectrum. We model this emission and derive properties of the diffuse radiation emitted by an otherwise dark population of such objects. We show that for early universe black holes the frequency and energy density of this radiation, which are in principle measurable, suffice to estimate the remnant density.