April 2023

The principle of a finite density of information

The possibility to describe the laws of the Universe in a computational way seems to be correlated to a principle that the density of information is bounded. This principle, that is dual to that of a finite velocity of information, has already been investigated in Physics, and is correlated to the old idea that there is no way to know a magnitude with an infinite precision. It takes different forms in classical Physics and in quantum Physics.

A resource theory of activity for quantum thermodynamics in the absence of heat baths

Active states, from which work can be extracted by time-dependent perturbations, are an important resource for quantum thermodynamics in the absence of heat baths. Here we characterize this resource, establishing a resource theory that captures the operational scenario where an experimenter manipulates a quantum system by means of energy-preserving operations and resets to non-active states. Our resource theory comes with simple conditions for state convertibility and an experimentally accessible resource quantifier that determines the maximum advantage of active states in the task of producing approximations of the maximally coherent state by means of energy-preserving quantum operations.

The principle of a finite density of information

The possibility to describe the laws of the Universe in a computational way seems to be correlated to a principle that the density of information is bounded. This principle, that is dual to that of a finite velocity of information, has already been investigated in Physics, and is correlated to the old idea that there is no way to know a magnitude with an infinite precision. It takes different forms in classical Physics and in quantum Physics.

A resource theory of activity for quantum thermodynamics in the absence of heat baths

Active states, from which work can be extracted by time-dependent perturbations, are an important resource for quantum thermodynamics in the absence of heat baths. Here we characterize this resource, establishing a resource theory that captures the operational scenario where an experimenter manipulates a quantum system by means of energy-preserving operations and resets to non-active states. Our resource theory comes with simple conditions for state convertibility and an experimentally accessible resource quantifier that determines the maximum advantage of active states in the task of producing approximations of the maximally coherent state by means of energy-preserving quantum operations.

Erik Curiel
Munich Center for Mathematical PhilosophySchematizing the Observer and the Epistemic Content of Theories

Following some observations of Howard Stein, I argue that, contrary to contemporary standard philosophical views of physical theories, one cannot understand the structure and nature of our knowledge in physics without an analysis of the way that observers (and, more generally, measuring instruments and experimental arrangements) are modeled in theory. One upshot is that standard …

Erik Curiel
Munich Center for Mathematical PhilosophySchematizing the Observer and the Epistemic Content of Theories
Read More »

Pierre Martin-Dussaud
Institut National du Service PublicCan French Administration be more sexy than Quantum Gravity?

After ten years in science, wandering between quantum gravity and quantum foundations, I have entered l’Institut National du Service Public (ex-ENA) to pursue a career as top executive in the French administration. In this unusual talk, I will offer my personal take on the following questions: – Is there a life after academia? – What …

Pierre Martin-Dussaud
Institut National du Service PublicCan French Administration be more sexy than Quantum Gravity?
Read More »

Picturing counting reductions with the ZH-calculus

Counting the solutions to Boolean formulae defines the problem #SAT, which is complete for the complexity class #P. We use the ZH-calculus, a universal and complete graphical language for linear maps which naturally encodes counting problems in terms of diagrams, to give graphical reductions from #SAT to several related counting problems. Some of these graphical reductions, like to #2SAT, are substantially simpler than known reductions via the matrix permanent. Additionally, our approach allows us to consider the case of counting solutions modulo an integer on equal footing. Finally, since the ZH-calculus was originally introduced to reason about quantum computing, we show that the problem of evaluating ZH-diagrams in the fragment corresponding to the Clifford+T gateset, is in $FP^{#P}$. Our results show that graphical calculi represent an intuitive and useful framework for reasoning about counting problems.

Probes, purviews, purgatories, parable, paradox?

I discuss some general information-theoretic properties of quantum mechanical probes in semiclassical gravity: their purview, i.e. what they can see and act on (in terms of a generalised entanglement wedge), their spontaneous evaporation into a cloud of highly entropic particles when one tries to make them see too much (perhaps a parable on the dangers of straining one’s eyes), and the subsequent resolution of an apparent information paradox.

Gravitationally-induced entanglement in cold atoms

A promising route to testing quantum gravity in the laboratory is to look for gravitationally-induced entanglement (GIE) between two or more quantum matter systems. Principally, proposals for such tests have used microsolid systems, with highly non-classical states, such as N00N states or highly-squeezed states. Here, we consider, for the first time, GIE between two cold atomic gasses as a test of quantum gravity. We propose placing two atom interferometers next to each other in parallel and looking for correlations in the number of atoms at the output ports as evidence of GIE and quantum gravity. There are no challenging macroscopic superposition states, such as N00N or Schr”odinger cat states, instead classical-like `coherent’ states of atoms. This requires the total mass of the atom interferometers to be on the Planck mass scale, and long integration times. With current state-of-the-art quantum squeezing in cold atoms, however, we argue that the mass scale can be reduced to approachable levels and outline how such a mass scale can be achieved in the near future.

Picturing counting reductions with the ZH-calculus

Counting the solutions to Boolean formulae defines the problem #SAT, which is complete for the complexity class #P. We use the ZH-calculus, a universal and complete graphical language for linear maps which naturally encodes counting problems in terms of diagrams, to give graphical reductions from #SAT to several related counting problems. Some of these graphical reductions, like to #2SAT, are substantially simpler than known reductions via the matrix permanent. Additionally, our approach allows us to consider the case of counting solutions modulo an integer on equal footing. Finally, since the ZH-calculus was originally introduced to reason about quantum computing, we show that the problem of evaluating ZH-diagrams in the fragment corresponding to the Clifford+T gateset, is in $FP^{#P}$. Our results show that graphical calculi represent an intuitive and useful framework for reasoning about counting problems.