November 2019

Quantum Computation with Machine-Learning-Controlled Quantum Stuff

We describe how one may go about performing quantum computation with arbitrary “quantum stuff”, as long as it has some basic physical properties. Imagine a long strip of stuff, equipped with regularly spaced wires to provide input settings and to read off outcomes. After showing how the corresponding map from settings to outcomes can be construed as a quantum circuit, we provide a machine learning algorithm to tomographically “learn” which settings implement the members of a universal gate set. At optimum, arbitrary quantum gates, and thus arbitrary quantum programs, can be implemented using the stuff.

Generalized probability rules from a timeless formulation of Wigner’s friend scenarios

The quantum measurement problem can be regarded as the tension between the two alternative dynamics prescribed by quantum mechanics: the unitary evolution of the wave function and the state-update rule (or “collapse”) at the instant a measurement takes place. The notorious Wigner’s friend gedankenexperiment constitutes the paradoxical scenario in which different observers (one of whom is observed by the other) describe one and the same interaction differently, one –the Friend– via state-update and the other –Wigner– unitarily. This can lead to Wigner and his friend assigning different probabilities to the outcome of the same subsequent measurement. In this paper, we apply the Page-Wootters mechanism (PWM) as a timeless description of Wigner’s friend-like scenarios. We show that the standard rules to assign two-time conditional probabilities within the PWM need to be modified to deal with the Wigner’s friend gedankenexperiment. We identify three main definitions of such modified rules to assign two-time conditional probabilities, all of which reduce to standard quantum theory for non-Wigner’s friend scenarios. However, when applied to the Wigner’s friend setup each rule assigns different conditional probabilities, potentially resolving the probability-assignment paradoin a different manner. Moreover, one rule imposes strict limits on when a joint probability distribution for the measurement outcomes of Wigner and his Friend is well-defined, which single out those cases where Wigner’s measurement does not disturb the Friend’s memory and such a probability has an operational meaning in terms of collectible statistics. Interestingly, the same limits guarantee that said measurement outcomes fulfill the consistency condition of the consistent histories framework.

Black holes, Planckian granularity, and the changing cosmological `constant’

In a recent work we have argued that nosy energy momentum diffusion due to space-time discreteness at the Planck scale (naturally expected to arise from quantum gravity) can be responsible for the generation of a cosmological constant during the electro-weak phase transition era of the cosmic evolution. Simple dimensional analysis and an effectively Brownian description of the propagation of fundamental particles on a granular background yields a cosmological constant of the order of magnitude of the observed value, without fine tuning. While the energy diffusion is negligible for matter in standard astrophysical configurations (from ordinary stars to neutron stars) here we argue that a similar diffusion mechanism could, nonetheless be important for black holes. If such effects are taken into account two observational puzzles might be solved by a single mechanism: the `$H_0$ tension’ and the relatively low rotational spin of the black holes detected via gravitational wave astronomy.

ESA Voyage 2050 white paper — GrailQuest: hunting for Atoms of Space and Time hidden in the wrinkle of Space-Time

GrailQuest (Gamma Ray Astronomy International Laboratory for QUantum Exploration of Space-Time) is a mission concept based on a constellation (hundreds/thousands) of nano/micro/small-satellites in low (or near) Earth orbits. Each satellite hosts a non-collimated array of scintillator crystals coupled with Silicon Drift Detectors with broad energy band coverage (keV-MeV range) and excellent temporal resolution ( below or equal 100 nanoseconds) each with effective area around 100 cm2. This simple and robust design allows for mass-production of the satellites of the fleet. This revolutionary approach implies a huge reduction of costs, flexibility in the segmented launching strategy, and an incremental long-term plan to increase the number of detectors and their performance: a living observatory for next-generation, space-based astronomical facilities. GrailQuest is conceived as an all-sky monitor for fast localisation of high signal-to-noise ratio transients in the X/gamma-ray band, e.g. the elusive electromagnetic counterparts of gravitational wave events. Robust temporal triangulation techniques will allow unprecedented localisation capabilities, in the keV-MeV band, of a few arcseconds or below, depending on the temporal structure of the transient event. The ambitious ultimate goal of this mission is to perform the first experiment, in quantum gravity, to directly probe space-time structure down to the minuscule Planck scale, by constraining or measuring a first order dispersion relation for light in vacuo. This is obtained by detecting delays between photons of different energies in the prompt emission of Gamma-ray Bursts.