May 2024

Causal structure in spin-foams

The metric field of general relativity is almost fully determined by its causal structure. Yet, in spin-foam models for quantum gravity, the role played by the causal structure is still largely unexplored. The goal of this paper is to clarify how causality is encoded in such models. The quest unveils the physical meaning of the orientation of the two-complex and its role as a dynamical variable. We propose a causal version of the EPRL spin-foam model and discuss the role of the causal structure in the reconstruction of a semiclassical spacetime geometry.

Is Planckian discreteness observable in cosmology?

A Planck scale inflationary era — in a quantum gravity theory predicting discreteness of quantum geometry at the fundamental scale — produces the scale invariant spectrum of inhomogeneities with very small tensor-to-scalar ratio of perturbations and a hot big bang leading to a natural dark matter genesis scenario. Here we evoke the possibility that some of the major puzzles in cosmology would have an explanation rooted in quantum gravity.

Centerless-BMS charge algebra

We show that when the Wald-Zoupas prescription is implemented, the resulting charges realize the BMS symmetry algebra without any 2-cocycle nor central extension, at any cut of future null infinity. We refine the covariance prescription for application to the charge aspects, and introduce a new aspect for Geroch’s super-momentum with better covariance properties. For the extended BMS symmetry with singular conformal Killing vectors we find that a Wald-Zoupas symplectic potential exists, if one is willing to modify the symplectic structure by a corner term. The resulting algebra of Noether currents between two arbitrary cuts is center-less. The charge algebra at a given cut has a residual field-dependent 2-cocycle, but time-independent and non-radiative. More precisely, super-rotation fluxes act covariantly, but super-rotation charges act covariantly only on global translations. The take home message is that in any situation where 2-cocycles appears in the literature, covariance has likely been lost in the charge prescription, and that the criterium of covariance is a powerful one to reduce ambiguities in the charges, and can be used also for ambiguities in the charge aspects.

Mock-local energy density of gravitational waves

We propose a new set of BMS charges at null infinity, characterized by a super-translation flux that contains only the `hard’ term. This is achieved with a specific corner improvement of the symplectic 2-form, and we spell the conditions under which it is unique. The charges are associated to a Wald-Zoupas symplectic potential, and satisfy all standard criteria: they are covariant, provide a center-less realization of the symmetry algebra, have vanishing flux in non-radiative spacetimes, and vanish in Minkowski. We use them to define a certain notion of localized energy density of gravitational waves. They have potential applications to the generalized second law and to soft theorems.

Exploring the Local Landscape in the Triangle Network

Characterizing the set of distributions that can be realized in the triangle network is a notoriously difficult problem. In this work, we investigate inner approximations of the set of local (classical) distributions of the triangle network. A quantum distribution that appears to be nonlocal is the Elegant Joint Measurement (EJM) [Entropy. 2019; 21(3):325], which motivates us to study distributions having the same symmetries as the EJM. We compare analytical and neural-network-based inner approximations and find a remarkable agreement between the two methods. Using neural network tools, we also conjecture network Bell inequalities that give a trade-off between the levels of correlation and symmetry that a local distribution may feature. Our results considerably strengthen the conjecture that the EJM is nonlocal.

ZX-calculus is Complete for Finite-Dimensional Hilbert Spaces

The ZX-calculus is a graphical language for reasoning about quantum computing and quantum information theory. As a complete graphical language, it incorporates a set of axioms rich enough to derive any equation of the underlying formalism. While completeness of the ZX-calculus has been established for qubits and the Clifford fragment of prime-dimensional qudits, universal completeness beyond two-level systems has remained unproven until now. In this paper, we present a proof establishing the completeness of finite-dimensional ZX-calculus, incorporating only the mixed-dimensional Z-spider and the qudit X-spider as generators. Our approach builds on the completeness of another graphical language, the finite-dimensional ZW-calculus, with direct translations between these two calculi. By proving its completeness, we lay a solid foundation for the ZX-calculus as a versatile tool not only for quantum computation but also for various fields within finite-dimensional quantum theory.

Primordial power spectrum at N3LO in effective theories of inflation

We develop a systematic framework to compute the primordial power spectrum up to next-to-next-to-next to leading order (N3LO) in the Hubble-flow parameters for a large class of effective theories of inflation. We assume that the quadratic action for perturbations is characterized by two functions of time, the kinetic amplitude and the speed of sound, that are independent of the Fourier mode $k$. Using the Green’s function method introduced by Stewart $&$ Gong and developed by Auclair $&$ Ringeval, we determine the primordial power spectrum, including its amplitude, spectral indices, their running and running of their running, starting from a given generic action for perturbations. As a check, we reproduce the state-of-the-art results for scalar and the tensor power spectrum of the simplest “vanilla” models of single-field inflation. The framework applies to Weinberg’s effective field theory of inflation (with the condition of no parity violation) and to effective theory of spontaneous de Sitter-symmetry breaking. As a concrete application, we provide the expression for the N3LO power spectrum of $R+R^2$ Starobinsky inflation, without a field redefinition. All expressions are provided in terms of an expansion in one single parameter, the number of inflationary e-foldings $N_*$. Surprisingly we find that, compared to previous leading-order calculations, for $N_* = 55$ the N3LO correction results in a $7%$ decrease of the predicted tensor-to-scalar ratio, in addition to a deviation from the consistency relation. These results provide precise theoretical predictions for the next generation of CMB observations.

Renate Loll
Radboud University NijmegenReally nonperturbative quantum gravity

I will sketch the toolbox and achievements of modern lattice quantum gravity, aka solving the full 4D Lorentzian gravitational path integral, using causal dynamical triangulations (CDT). It provides us with a long-sought window on physics in a near-Planckian regime, where geometry is highly nonclassical and not describable in terms of standard tensor calculus. With concrete answers to longstanding issues of how to properly implement diffeomorphism invariance, causal structure and Wick rotation, we are now focusing on interesting, approach-independent questions on the nature of nonperturbative quantum gravity and its observables. Based on results on the dynamical emergence of a 4D universe with de Sitter properties from first principles, early-universe cosmology may be our best bet in terms of quantum gravity phenomenology.

Semi-device independent characterization of multiphoton indistinguishability

Multiphoton indistinguishability is a central resource for quantum enhancement in sensing and computation. Developing and certifying large scale photonic devices requires reliable and accurate characterization of this resource, preferably using methods that are robust against experimental errors. Here, we propose a set of methods for the characterization of multiphoton indistinguishability, based on measurements of bunching and photon number variance. Our methods are robust in a semi-device independent way, in the sense of being effective even when the interferometers are incorrectly dialled. We demonstrate the effectiveness of this approach using an advanced photonic platform comprising a quantum-dot single-photon source and a universal fully-programmable integrated photonic processor. Our results show the practical usefulness of our methods, providing robust certification tools that can be scaled up to larger systems.

Gravitational entropy is observer-dependent

In quantum gravity, it has been argued that a proper accounting of the role played by an observer promotes the von Neumann algebra of observables in a given spacetime subregion from Type III to Type II. While this allows for a mathematically precise definition of its entropy, we show that this procedure depends on which observer is employed. We make this precise by considering a setup in which many possible observers are present; by generalising previous approaches, we derive density operators for the subregion relative to different observers (and relative to arbitrary collections of observers), and we compute the associated entropies in a semiclassical regime, as well as in some specific examples that go beyond this regime. We find that the entropies seen by distinct observers can drastically differ. Our work makes extensive use of the formalism of quantum reference frames (QRF); indeed, as we point out, the ‘observers’ considered here and in the previous works are nothing but QRFs. In the process, we demonstrate that the description of physical states and observables invoked by Chandrasekaran et al. [arXiv:2206.10780] is equivalent to the Page-Wootters formalism, leading to the informal slogan “PW=CLPW”. It is our hope that this paper will help motivate a long overdue union between the QRF and quantum gravity communities. Further details will appear in a companion paper.