We develop a systematic framework to compute the primordial power spectrum up to next-to-next-to-next to leading order (N3LO) in the Hubble-flow parameters for a large class of effective theories of inflation. We assume that the quadratic action for perturbations is characterized by two functions of time, the kinetic amplitude and the speed of sound, that are independent of the Fourier mode $k$. Using the Green’s function method introduced by Stewart $&$ Gong and developed by Auclair $&$ Ringeval, we determine the primordial power spectrum, including its amplitude, spectral indices, their running and running of their running, starting from a given generic action for perturbations. As a check, we reproduce the state-of-the-art results for scalar and the tensor power spectrum of the simplest “vanilla” models of single-field inflation. The framework applies to Weinberg’s effective field theory of inflation (with the condition of no parity violation) and to effective theory of spontaneous de Sitter-symmetry breaking. As a concrete application, we provide the expression for the N3LO power spectrum of $R+R^2$ Starobinsky inflation, without a field redefinition. All expressions are provided in terms of an expansion in one single parameter, the number of inflationary e-foldings $N_*$. Surprisingly we find that, compared to previous leading-order calculations, for $N_* = 55$ the N3LO correction results in a $7%$ decrease of the predicted tensor-to-scalar ratio, in addition to a deviation from the consistency relation. These results provide precise theoretical predictions for the next generation of CMB observations.