July 2022

Diffuse emission from black hole remnants

We point out that conservation of information implies that remnants produced at the end of black hole evaporation should radiate in the low-frequency spectrum. We model this emission and derive properties of the diffuse radiation emitted by an otherwise dark population of such objects. We show that for early universe black holes the frequency and energy density of this radiation, which are in principle measurable, suffice to estimate the remnant density.

Gravity entanglement, quantum reference systems, degrees of freedom

We discuss the physical interpretation of the gravity mediated entanglement effect. We show how to read it in terms of quantum reference systems. We pinpoint the single gravitational degree of freedom mediating the entanglement. We clarify why the distinction between longitudinal and transverse degrees of freedom is irrelevant for the interpretation of the results. We discuss the relation between the LOCC theorem and the interpretation of the effect, its different relevance for, respectively, the quantum gravity and quantum information communities, and the reason for the excitement raised by the prospect of detection.

Photonic Implementation of Quantum Gravity Simulator

Detecting gravity mediated entanglement can provide evidence that the gravitational field obeys quantum mechanics. We report the result of a simulation of the phenomenon using a photonic platform. The simulation tests the idea of probing the quantum nature of a variable by using it to mediate entanglement, and yields theoretical and experimental insights. We employed three methods to test the presence of entanglement: Bell test, entanglement witness and quantum state tomography. We also simulate the alternative scenario predicted by gravitational collapse models or due to imperfections in the experimental setup and use quantum state tomography to certify the absence of entanglement. Two main lessons arise from the simulation: 1) which–path information must be first encoded and subsequently coherently erased from the gravitational field, 2) performing a Bell test leads to stronger conclusions, certifying the existence of gravity mediated nonlocality.

Time, space and matter in the primordial universe

Time, space, and matter are categories of our reasoning, whose properties appear to be fundamental. However, these require a scrutiny as in the extreme regime of the primordial universe these present quantum properties. What does it mean for time to be quantum? What does it mean for space? Are space and time disappearing, or what is disappearing are simply the categories we have been using to understand them? Concepts such as the superposition of causal structures or the quantum granularity of space require our attention and should be clarified to understand the physics of the primordial universe. The novelty that this brings requires us to reflect on matter as well: How can matter be defined on a granular space? Is quantum gravity hinting us toward considering new types of matter? The answers to these questions, that touch the foundations of physics and the very concepts with which we organize our understanding of reality, require in the end of the journey to confront ourselves with empirical data. And for that, the universe itself provides us with the best of possible laboratories.