September 2022

Inference of gravitational field superposition from quantum measurements

Experiments are beginning to probe the interaction of quantum particles with gravitational fields beyond the uniform-field regime. In non-relativistic quantum mechanics, the gravitational field in such experiments can be written as a superposition state. We empirically demonstrate that alternative theories of gravity can avoid gravitational superposition states only by decoupling the gravitational field energy from the quantum particle’s time evolution. Furthermore, such theories must specify a preferred quantum reference frame in which the equations of motion are valid. To the extent that these properties are theoretically implausible, recent experiments provide indirect evidence that gravity has quantum features. Proposed experiments with superposed gravitational sources would provide even stronger evidence that gravity is nonclassical.

Inference of gravitational field superposition from quantum measurements

Experiments are beginning to probe the interaction of quantum particles with gravitational fields beyond the uniform-field regime. In non-relativistic quantum mechanics, the gravitational field in such experiments can be written as a superposition state. We empirically demonstrate that alternative theories of gravity can avoid gravitational superposition states only by decoupling the gravitational field energy from the quantum particle’s time evolution. Furthermore, such theories must specify a preferred quantum reference frame in which the equations of motion are valid. To the extent that these properties are theoretically implausible, recent experiments provide indirect evidence that gravity has quantum features. Proposed experiments with superposed gravitational sources would provide even stronger evidence that gravity is nonclassical.

Poster for Ivan Agullo's Virtual Seminar Talk title "Entanglement in Quantum Field Theory", 4pm CEST

Ivan Agullo
Louisiana State UniversityEntanglement in quantum field theory

It is well known that, even the simplest states within the simplest field theories, are highly entangled. The main support for this fact comes from calculations of entanglement entropy between a region of space and its complement. I find two uncomfortable facts in the calculation of such entropy: (i) The result is actually infinite, and …

Ivan Agullo
Louisiana State UniversityEntanglement in quantum field theory
Read More »