March 2023

Are Entropy Bounds Epistemic?

Entropy bounds have played an important role in the development of holography as an approach to quantum gravity, so in this article we seek to gain a better understanding of the covariant entropy bound. We observe that there is a possible way of thinking about the covariant entropy bound which would suggest that it encodes an epistemic limitation rather than an objective count of the true number of degrees of freedom on a light-sheet; thus we distinguish between ontological and epistemic interpretations of the covariant bound. We consider the consequences that these interpretations might have for physics and we discuss what each approach has to say about gravitational phenomena. Our aim is not to advocate for either the ontological or epistemic approach in particular, but rather to articulate both possibilities clearly and explore some arguments for and against them.

QISS Spring School 2023

16-23 April 2023 One week graduate school featuring lectures by leading researchers in the fields of Quantum Information and Quantum Gravity. Held in the Goutelas castle in the south of France, from Sunday 16 to Sunday 23 of April 2023. The overarching theme of the research school is the understanding of spacetime and gravity through the lens of quantum information. …

QISS Spring School 2023 Read More »

Complete Graphical Language for Hermiticity-Preserving Superoperators

Universal and complete graphical languages have been successfully designed for pure state quantum mechanics, corresponding to linear maps between Hilbert spaces, and mixed states quantum mechanics, corresponding to completely positive superoperators. In this paper, we go one step further and present a universal and complete graphical language for Hermiticity-preserving superoperators. Such a language opens the possibility of diagrammatic compositional investigations of antilinear transformations featured in various physical situations, such as the Choi-Jamio{l}kowski isomorphism, spin-flip, or entanglement witnesses. Our construction relies on an extension of the ZW-calculus exhibiting a normal form for Hermitian matrices.

Graph subshifts

We propose a definition of graph subshifts of finite type that can be seen as extending both the notions of subshifts of finite type from classical symbolic dynamics and finitely presented groups from combinatorial group theory. These are sets of graphs that are defined by forbidding finitely many local patterns. In this paper, we focus on the question whether such local conditions can enforce a specific support graph, and thus relate the model to classical symbolic dynamics. We prove that the subshifts that contain only infinite graphs are either aperiodic, or feature no residual finiteness of their period group, yielding non-trivial examples as well as two natural undecidability theorems.

The Everything-is-a-Quantum-Wave Interpretation of Quantum Physics

In this paper I would like to outline what I think is the most natural interpretation of quantum mechanics. By natural, I simply mean that it requires the least amount of excess baggage and that it is universal in the sense that it can be consistently applied to all the observed phenomena including the universe as a whole. I call it the “Everything is a Quantum Wave” Interpretation (EQWI) because I think this is a more appropriate name than the Many Worlds Interpretation (MWI). The paper explains why this is so.

What Is In a Survey? Simulation-Induced Selection Effects in Astronomy

Observational astronomy is plagued with selection effects that must be taken into account when interpreting data from astronomical surveys. Because of the physical limitations of observing time and instrument sensitivity, datasets are rarely complete. However, determining specifically what is missing from any sample is not always straightforward. For example, there are always more faint objects (such as galaxies) than bright ones in any brightness-limited sample, but faint objects may not be of the same kind as bright ones. Assuming they are can lead to mischaracterizing the population of objects near the boundary of what can be detected. Similarly, starting with nearby objects that can be well observed and assuming that objects much farther away (and sampled from a younger universe) are of the same kind can lead us astray. Demographic models of galaxy populations can be used as inputs to observing system simulations to create “mock” catalogues that can be used to characterize and account for multiple, interacting selection effects. The use of simulations for this purpose is common practice in astronomy, and blurs the line between observations and simulations; the observational data cannot be interpreted independent of the simulations. We will describe this methodology and argue that astrophysicists have developed effective ways to establish the reliability of simulation-dependent observational programs. The reliability depends on how well the physical and demographic properties of the simulated population can be constrained through independent observations. We also identify a new challenge raised by the use of simulations, which we call the “problem of uncomputed alternatives.” Sometimes the simulations themselves create unintended selection effects when the limits of what can be simulated lead astronomers to only consider a limited space of alternative proposals.

On the geometry of the black-to-white hole transition within a single asymptotic region

We write explicitly the complete Lorentzian metric of a singularity-free spacetime where a black hole transitions into a white hole located in its same asymptotic region. In particular, the metric interpolates between the black and white horizons. The metric satisfies the Einstein field equations up to the tunneling region. The matter giving rise to the black hole is described by the Oppenheimer-Snyder model, corrected with loop-quantum-cosmology techniques in the quantum region. The interior quantum geometry is fixed by a local Killing symmetry, broken at the horizon transition. At large scale, the geometry is determined by two parameters: the mass of the hole and the duration of the transition process. The latter is a global geometrical parameter. We give the full metric outside the star in a single coordinate patch.

Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus

The ZX-calculus is a universal graphical language for qubit quantum computation, meaning that every linear map between qubits can be expressed in the ZX-calculus. Furthermore, it is a complete graphical rewrite system: any equation involving linear maps that is derivable in the Hilbert space formalism for quantum theory can also be derived in the calculus by rewriting. It has widespread usage within quantum industry and academia for a variety of tasks such as quantum circuit optimisation, error-correction, and education. The ZW-calculus is an alternative universal graphical language that is also complete for qubit quantum computing. In fact, its completeness was used to prove that the ZX-calculus is universally complete. This calculus has advanced how quantum circuits are compiled into photonic hardware architectures in the industry. Recently, by combining these two calculi, a new calculus has emerged for qubit quantum computation, the ZXW-calculus. Using this calculus, graphical-differentiation, -integration, and -exponentiation were made possible, thus enabling the development of novel techniques in the domains of quantum machine learning and quantum chemistry. Here, we generalise the ZXW-calculus to arbitrary finite dimensions, that is, to qudits. Moreover, we prove that this graphical rewrite system is complete for any finite dimension. This is the first completeness result for any universal graphical language beyond qubits.

Distilling Text into Circuits

This paper concerns the structure of meanings within natural language. Earlier, a framework named DisCoCirc was sketched that (1) is compositional and distributional (a.k.a. vectorial); (2) applies to general text; (3) captures linguistic `connections’ between meanings (cf. grammar) (4) updates word meanings as text progresses; (5) structures sentence types; (6) accommodates ambiguity. Here, we realise DisCoCirc for a substantial fragment of English. When passing to DisCoCirc’s text circuits, some `grammatical bureaucracy’ is eliminated, that is, DisCoCirc displays a significant degree of (7) inter- and intra-language independence. That is, e.g., independence from word-order conventions that differ across languages, and independence from choices like many short sentences vs. few long sentences. This inter-language independence means our text circuits should carry over to other languages, unlike the language-specific typings of categorial grammars. Hence, text circuits are a lean structure for the `actual substance of text’, that is, the inner-workings of meanings within text across several layers of expressiveness (cf. words, sentences, text), and may capture that what is truly universal beneath grammar. The elimination of grammatical bureaucracy also explains why DisCoCirc: (8) applies beyond language, e.g. to spatial, visual and other cognitive modes. While humans could not verbally communicate in terms of text circuits, machines can. We first define a `hybrid grammar’ for a fragment of English, i.e. a purpose-built, minimal grammatical formalism needed to obtain text circuits. We then detail a translation process such that all text generated by this grammar yields a text circuit. Conversely, for any text circuit obtained by freely composing the generators, there exists a text (with hybrid grammar) that gives rise to it. Hence: (9) text circuits are generative for text.

Basic ZX-calculus for students and professionals

These are the lecture notes of guest lectures for Artur Ekert’s course Introduction to Quantum Information at the Mathematical Institute of Oxford University, Hilary Term 2023. Some basic familiarity with Dirac notation is assumed. For the readers of Quantum in Pictures (QiP) who have some basic quantum background, these notes also constitute the shortest path to an explanation of how what they learn in QIP relates to the traditional quantum formalism.