June 2023

A toy model provably featuring an arrow of time without past hypothesis

The laws of Physics are time-reversible, making no qualitative distinction between the past and the future — yet we can only go towards the future. This apparent contradiction is known as the `arrow of time problem’. Its resolution states that the future is the direction of increasing entropy. But entropy can only increase towards the future if it was low in the past, and past low entropy is a very strong assumption to make, because low entropy states are rather improbable, non-generic. Recent works, however, suggest we can do away with this so-called `past hypothesis’, in the presence of reversible dynamical laws featuring expansion. We prove that this is the case for a toy model, set in a 1+1 discrete spacetime. It consists in graphs upon which particles circulate and interact according to local reversible rules. Some rules locally shrink or expand the graph. Generic states always expand; entropy always increases — thereby providing a local explanation for the arrow of time.

Light-Matter Interaction in the ZXW Calculus

In this paper, we develop a graphical calculus to rewrite photonic circuits involving light-matter interactions and non-linear optical effects. We introduce the infinite ZW calculus, a graphical language for linear operators on the bosonic Fock space which captures both linear and non-linear photonic circuits. This calculus is obtained by combining the QPath calculus, a diagrammatic language for linear optics, and the recently developed qudit ZXW calculus, a complete axiomatisation of linear maps between qudits. It comes with a ‘lifting’ theorem allowing to prove equalities between infinite operators by rewriting in the ZXW calculus. We give a method for representing bosonic and fermionic Hamiltonians in the infinite ZW calculus. This allows us to derive their exponentials by diagrammatic reasoning. Examples include phase shifts and beam splitters, as well as non-linear Kerr media and Jaynes-Cummings light-matter interaction.

Disappearing Without a Trace: The Arrows of Time in Kent’s Solution to the Lorentzian Quantum Reality Problem

Most existing proposals to explain the temporal asymmetries we see around us are sited within an approach to physics based on time evolution, and thus they typically put the asymmetry in at the beginning of time in the form of a special initial state. But there may be other possibilities for explaining temporal asymmetries if we don’t presuppose the time evolution paradigm. In this article, we explore one such possibility, based on Kent’s `final-measurement’ interpretation of quantum mechanics. We argue that this approach potentially has the resources to explain the electromagnetic asymmetry, the thermodynamic asymmetry, the coarse-graining asymmetry, the fork asymmetry, the record asymmetry, and the cosmological asymmetry, and that the explanations it offers may potentially be better than explanations appealing to a special initial state. Our hope is that this example will encourage further exploration of novel approaches to temporal asymmetry outside of the time evolution paradigm.

Linear Ultrastrong Optomechanical Interaction

Light-matter interaction in the ultrastrong coupling regime can be used to generate exotic ground states with two-mode squeezing and may be of use for quantum enhanced sensing. Current demonstrations of ultrastrong coupling have been performed in fundamentally nonlinear systems. We report a cavity optomechanical system that operates in the linear coupling regime, reaching a maximum coupling of $g_x/Omega_x=0.55pm 0.02$. Such a system is inherently unstable, which may in the future enable strong mechanical squeezing.

Observers in superposition and the no-signaling principle

The Wigner’s friend experiment is a thought experiment in which a so-called superobserver (Wigner) observes another observer (the friend) who has performed a quantum measurement on a physical system. In this setup Wigner treats the friend the system and potentially other degrees of freedom involved in the friend’s measurement as one joint quantum system. In general, Wigner’s measurement changes the internal record of the friend’s measurement result such that after the measurement by the superobserver the result stored in the observer’s memory register is no longer the same as the result the friend obtained at her measurement, i.e. before she was measured by Wigner. Here, we show that any awareness by the friend of such a change, which can be modeled by an additional memory register storing the information about the change, conflicts with the no-signaling condition in extended Wigner-friend scenarios.

Paradox with Phase-Coupled Interferometers

A pair of interferometers can be coupled by allowing one path from each to overlap such that if the particles meet in this overlap region, they annihilate. It was shown by one of us over thirty years ago that such annihilation-coupled interferometers can exhibit apparently paradoxical behaviour. More recently, Bose et al. and Marletto and Vedral have considered a pair of interferometers that are phase-coupled (where the coupling is through gravitational interaction). In this case one path from each interferometer undergoes a phase-coupling interaction. We show that these phase-coupled interferometers exhibit the same apparent paradox as the annihilation-coupled interferometers, though in a curiously dual manner.

Relational superposition measurements with a material quantum ruler

In physics, it is crucial to identify operational measurement procedures to give physical meaning to abstract quantities. There has been significant effort to define time operationally using quantum systems, but the same has not been achieved for space. Developing an operational procedure to obtain information about the location of a quantum system is particularly important for a theory combining general relativity and quantum theory, which cannot rest on the classical notion of spacetime. Here, we take a first step towards this goal, and introduce a model to describe an extended material quantum system working as a position measurement device. Such a “quantum ruler” is composed of N harmonically interacting dipoles and serves as a (quantum) reference system for the position of another quantum system. We show that we can define a quantum measurement procedure corresponding to the “superposition of positions”, and that by performing this measurement we can distinguish when the quantum system is in a coherent or incoherent superposition in the position basis. The model is fully relational, because the only meaningful variables are the relative positions between the ruler and the system, and the measurement is expressed in terms of an interaction between the measurement device and the measured system.

Disappearing Without a Trace: The Arrows of Time in Kent’s Solution to the Lorentzian Quantum Reality Problem

Most existing proposals to explain the temporal asymmetries we see around us are sited within an approach to physics based on time evolution, and thus they typically put the asymmetry in at the beginning of time in the form of a special initial state. But there may be other possibilities for explaining temporal asymmetries if we don’t presuppose the time evolution paradigm. In this article, we explore one such possibility, based on Kent’s `final-measurement’ interpretation of quantum mechanics. We argue that this approach potentially has the resources to explain the electromagnetic asymmetry, the thermodynamic asymmetry, the coarse-graining asymmetry, the fork asymmetry, the record asymmetry, and the cosmological asymmetry, and that the explanations it offers may potentially be better than explanations appealing to a special initial state. Our hope is that this example will encourage further exploration of novel approaches to temporal asymmetry outside of the time evolution paradigm.

Linear Ultrastrong Optomechanical Interaction

Light-matter interaction in the ultrastrong coupling regime can be used to generate exotic ground states with two-mode squeezing and may be of use for quantum enhanced sensing. Current demonstrations of ultrastrong coupling have been performed in fundamentally nonlinear systems. We report a cavity optomechanical system that operates in the linear coupling regime, reaching a maximum coupling of $g_x/Omega_x=0.55pm 0.02$. Such a system is inherently unstable, which may in the future enable strong mechanical squeezing.