September 2023

General gravitational charges on null hypersurfaces

We perform a detailed study of the covariance properties of the gravitational symplectic potential on a null hypersurface, and of the different polarizations that can be used to study conservative as well as leaky boundary conditions. We study the symmetry groups that arise with different %boundary conditions in the phase space prescriptions, and determine the fields that have anomalous transformations. This allows us to identify a one-parameter family of covariant symplectic potentials. Imposing stationarity as in the original Wald-Zoupas prescription, one recovers the unique symplectic potential of Chandrasekaran, Flanagan and Prabhu. The associated charges are all conserved on non-expanding horizons, but not on flat spacetime. We show that it is possible to demand a weaker notion of stationarity which selects another symplectic potential, again in a unique way, and whose charges are conserved on both non-expanding horizons and flat light-cones. Furthermore, the flux of future-pointing diffeomorphisms at leading-order around an outgoing flat light-cone is positive and reproduces the tidal heating term plus a memory-like term. Our results have applications for dynamical notions of entropy, and are useful to clarify the interplay between different boundary conditions, charge prescriptions, and symmetry groups that can be associated with a null boundary. We also study the conformal conservative boundary conditions suggested by the alternative polarization and identify under which conditions they define a non-ambiguous variational principle.

Null Raychaudhuri: Canonical Structure and the Dressing Time

We initiate a study of gravity focusing on generic null hypersurfaces, non-perturbatively in the Newton coupling. We present an off-shell account of the extended phase space of the theory, which includes the expected spin-2 data as well as spin-0, spin-1 and arbitrary matter degrees of freedom. We construct the charges and the corresponding kinematic Poisson brackets, employing a Beltrami parameterization of the spin-2 modes. We explicitly show that the constraint algebra closes, the details of which depend on the non-perturbative mixing between spin-0 and spin-2 modes. Finally we show that the spin zero sector encodes a notion of a clock, called dressing time, which is dynamical and conjugate to the constraint. It is well-known that the null Raychaudhuri equation describes how the geometric data of a null hypersurface evolve in null time in response to gravitational radiation and external matter. Our analysis leads to three complementary viewpoints on this equation. First, it can be understood as a Carrollian stress tensor conservation equation. Second, we construct spin-$0$, spin-$2$ and matter stress tensors that act as generators of null time reparametrizations for each sector. This leads to the perspective that the null Raychaudhuri equation can be understood as imposing that the sum of CFT-like stress tensors vanishes. Third, we solve the Raychaudhuri constraint non-perturbatively. The solution relates the dressing time to the spin-$2$ and matter boost charge operators. Finally we establish that the corner charge corresponding to the boost operator in the dressing time frame is concave. These results show that the notion of an observer can be thought of as emerging from the gravitational degrees of freedom themselves. We briefly mention that the construction offers new insights into focusing conjectures.

A trace inequality for Euclidean gravitational path integrals (and a new positive action conjecture)

The AdS/CFT correspondence states that certain conformal field theories are equivalent to string theories in a higher-dimensional anti-de Sitter space. One aspect of the correspondence is an equivalence of density matrices or, if one ignores normalizations, of positive operators. On the CFT side of the correspondence, any two positive operators $A,B$ will satisfy the trace inequality $operatorname{Tr}(AB) leq operatorname{Tr}(A) operatorname{Tr}(B)$. This relation holds on any Hilbert space ${cal H}$ and is deeply associated with the fact that the algebra $B({cal H})$ of bounded operators on ${cal H}$ is a type I von Neumann factor. Holographic bulk theories must thus satisfy a corresponding condition, which we investigate below. In particular, we argue that the Euclidean gravitational path integral respects this inequality at all orders in the semi-classical expansion and with arbitrary higher-derivative corrections. The argument relies on a conjectured property of the classical gravitational action, which in particular implies a positive action conjecture for quantum gravity wavefunctions. We prove this conjecture for Jackiw-Teitelboim gravity and we also motivate it for more general theories.

Global Synthesis of CNOT Circuits with Holes

A common approach to quantum circuit transformation is to use the properties of a specific gate set to create an efficient representation of a given circuit’s unitary, such as a parity matrix or stabiliser tableau, and then resynthesise an improved circuit, e.g. with fewer gates or respecting connectivity constraints. Since these methods rely on a restricted gate set, generalisation to arbitrary circuits usually involves slicing the circuit into pieces that can be resynthesised and working with these separately. The choices made about what gates should go into each slice can have a major effect on the performance of the resynthesis. In this paper we propose an alternative approach to generalising these resynthesis algorithms to general quantum circuits. Instead of cutting the circuit into slices, we “cut out” the gates we can’t resynthesise leaving holes in our quantum circuit. The result is a second-order process called a quantum comb, which can be resynthesised directly. We apply this idea to the RowCol algorithm, which resynthesises CNOT circuits for topologically constrained hardware, explaining how we were able to extend it to work for quantum combs. We then compare the generalisation of RowCol using our method to the naive “slice and build” method empirically on a variety of circuit sizes and hardware topologies. Finally, we outline how quantum combs could be used to help generalise other resynthesis algorithms.