Qiss

Any consistent coupling between classical gravity and quantum matter is fundamentally irreversible

When gravity is sourced by a quantum system, there is tension between its role as the mediator of a fundamental interaction, which is expected to acquire nonclassical features, and its role in determining the properties of spacetime, which is inherently classical. Fundamentally, this tension should result in breaking one of the fundamental principles of quantum theory or general relativity, but it is usually hard to assess which one without resorting to a specific model. Here, we answer this question in a theory-independent way using General Probabilistic Theories (GPTs). We consider the interactions of the gravitational field with a single matter system, and derive a no-go theorem showing that when gravity is classical at least one of the following assumptions needs to be violated: (i) Matter degrees of freedom are described by fully non-classical degrees of freedom; (ii) Interactions between matter degrees of freedom and the gravitational field are reversible; (iii) Matter degrees of freedom back-react on the gravitational field. We argue that this implies that theories of classical gravity and quantum matter must be fundamentally irreversible, as is the case in the recent model of Oppenheim et al. Conversely if we require that the interaction between quantum matter and the gravitational field are reversible, then the gravitational field must be non-classical.

Dark Energy or Modified Gravity?

We consider some of the epistemic benefits of exploring “theory space” in the context of modifications of general relativity with intended applications in cosmology. We show how studying modifications of general relativity can help in assessing the robustness of empirical inferences, particularly in inaccessible regimes. We also discuss challenges to sharply distinguishing apparently distinct directions in theory space.

Do We Have Any Viable Solution to the Measurement Problem?

Wallace (2022) has recently argued that a number of popular approaches to the measurement problem can’t be fully extended to relativistic quantum mechanics and quantum field theory; Wallace thus contends that as things currently stand, only the unitary-only approaches to the measurement problem are viable. However, the unitary-only approaches face serious epistemic problems which may threaten their viability as solutions, and thus we consider that it remains an urgent outstanding problem to find a viable solution to the measurement problem which can be extended to relativistic quantum mechanics. In this article we seek to understand in general terms what such a thing might look like. We argue that in order to avoid serious epistemic problems, the solution must be a single-world realist approach, and we further argue that any single-world realist approach which is able to reproduce the predictions of relativistic quantum mechanics will most likely have the property that our observable reality does not supervene on dynamical, precisely-defined microscopic beables. Thus we suggest three possible routes for further exploration: observable reality could be approximate and emergent, as in relational quantum mechanics with the addition of cross-perspective links, or observable reality could supervene on beables which are not microscopically defined, as in the consistent histories approach, or observable reality could supervene on beables which are not dynamical, as in Kent’s solution to the Lorentzian classical reality problem. We conclude that once all of these issues are taken into account, the options for a viable solution to the measurement problem are significantly narrowed down.

Modelling quantum particles falling into a black hole: the deep interior limit

In this paper we construct a solvable toy model of the quantum dynamics of the interior of a spherical black hole with falling spherical scalar field excitations. We first argue about how some aspects of the quantum gravity dynamics of realistic black holes emitting Hawking radiation can be modelled using Kantowski-Sachs solutions with a massless scalar field when one focuses on the deep interior region $rll M$ (including the singularity). Further, we show that in the $rll M$ regime, and in suitable variables, the KS model becomes exactly solvable at both the classical and quantum levels. The quantum dynamics inspired by loop quantum gravity is revisited. We propose a natural polymer-quantization where the area $a$ of the orbits of the rotation group is quantized. The polymer (or loop) dynamics is closely related with the Schroedinger dynamics away from the singularity with a form of continuum limit naturally emerging from the polymer treatment. The Dirac observable associated to the mass is quantized and shown to have an infinite degeneracy associated to the so-called $epsilon$-sectors. Suitable continuum superpositions of these are well defined distributions in the fundamental Hilbert space and satisfy the continuum Schroedinger dynamics.

Do We Have Any Viable Solution to the Measurement Problem?

Wallace (2022) has recently argued that a number of popular approaches to the measurement problem can’t be fully extended to relativistic quantum mechanics and quantum field theory; Wallace thus contends that as things currently stand, only the unitary-only approaches to the measurement problem are viable. However, the unitary-only approaches face serious epistemic problems which may threaten their viability as solutions, and thus we consider that it remains an urgent outstanding problem to find a viable solution to the measurement problem which can be extended to relativistic quantum mechanics. In this article we seek to understand in general terms what such a thing might look like. We argue that in order to avoid serious epistemic problems, the solution must be a single-world realist approach, and we further argue that any single-world realist approach which is able to reproduce the predictions of relativistic quantum mechanics will most likely have the property that our observable reality does not supervene on dynamical, precisely-defined microscopic beables. Thus we suggest three possible routes for further exploration: observable reality could be approximate and emergent, as in relational quantum mechanics with the addition of cross-perspective links, or observable reality could supervene on beables which are not microscopically defined, as in the consistent histories approach, or observable reality could supervene on beables which are not dynamical, as in Kent’s solution to the Lorentzian classical reality problem. We conclude that once all of these issues are taken into account, the options for a viable solution to the measurement problem are significantly narrowed down.

Modelling quantum particles falling into a black hole: the deep interior limit

In this paper we construct a solvable toy model of the quantum dynamics of the interior of a spherical black hole with falling spherical scalar field excitations. We first argue about how some aspects of the quantum gravity dynamics of realistic black holes emitting Hawking radiation can be modelled using Kantowski-Sachs solutions with a massless scalar field when one focuses on the deep interior region $rll M$ (including the singularity). Further, we show that in the $rll M$ regime, and in suitable variables, the KS model becomes exactly solvable at both the classical and quantum levels. The quantum dynamics inspired by loop quantum gravity is revisited. We propose a natural polymer-quantization where the area $a$ of the orbits of the rotation group is quantized. The polymer (or loop) dynamics is closely related with the Schroedinger dynamics away from the singularity with a form of continuum limit naturally emerging from the polymer treatment. The Dirac observable associated to the mass is quantized and shown to have an infinite degeneracy associated to the so-called $epsilon$-sectors. Suitable continuum superpositions of these are well defined distributions in the fundamental Hilbert space and satisfy the continuum Schroedinger dynamics.

Do We Have Any Viable Solution to the Measurement Problem?

Wallace (2022) has recently argued that a number of popular approaches to the measurement problem can’t be fully extended to relativistic quantum mechanics and quantum field theory; Wallace thus contends that as things currently stand, only the unitary-only approaches to the measurement problem are viable. However, the unitary-only approaches face serious epistemic problems which may threaten their viability as solutions, and thus we consider that it remains an urgent outstanding problem to find a viable solution to the measurement problem which can be extended to relativistic quantum mechanics. In this article we seek to understand in general terms what such a thing might look like. We argue that in order to avoid serious epistemic problems, the solution must be a single-world realist approach, and we further argue that any single-world realist approach which is able to reproduce the predictions of relativistic quantum mechanics will most likely have the property that our observable reality does not supervene on dynamical, precisely-defined microscopic beables. Thus we suggest three possible routes for further exploration: observable reality could be approximate and emergent, as in relational quantum mechanics with the addition of cross-perspective links, or observable reality could supervene on beables which are not microscopically defined, as in the consistent histories approach, or observable reality could supervene on beables which are not dynamical, as in Kent’s solution to the Lorentzian classical reality problem. We conclude that once all of these issues are taken into account, the options for a viable solution to the measurement problem are significantly narrowed down.

Modelling quantum particles falling into a black hole: the deep interior limit

In this paper we construct a solvable toy model of the quantum dynamics of the interior of a spherical black hole with falling spherical scalar field excitations. We first argue about how some aspects of the quantum gravity dynamics of realistic black holes emitting Hawking radiation can be modelled using Kantowski-Sachs solutions with a massless scalar field when one focuses on the deep interior region $rll M$ (including the singularity). Further, we show that in the $rll M$ regime, and in suitable variables, the KS model becomes exactly solvable at both the classical and quantum levels. The quantum dynamics inspired by loop quantum gravity is revisited. We propose a natural polymer-quantization where the area $a$ of the orbits of the rotation group is quantized. The polymer (or loop) dynamics is closely related with the Schroedinger dynamics away from the singularity with a form of continuum limit naturally emerging from the polymer treatment. The Dirac observable associated to the mass is quantized and shown to have an infinite degeneracy associated to the so-called $epsilon$-sectors. Suitable continuum superpositions of these are well defined distributions in the fundamental Hilbert space and satisfy the continuum Schroedinger dynamics.

Spinfoams and high performance computing

Numerical methods are a powerful tool for doing calculations in spinfoam theory. We review the major frameworks available, their definition, and various applications. We start from $texttt{sl2cfoam-next}$, the state-of-the-art library to efficiently compute EPRL spin foam amplitudes based on the booster decomposition. We also review two alternative approaches based on the integration representation of the spinfoam amplitude: Firstly, the numerical computations of the complex critical points discover the curved geometries from the spinfoam amplitude and provides important evidence of resolving the flatness problem in the spinfoam theory. Lastly, we review the numerical estimation of observable expectation values based on the Lefschetz thimble and Markov-Chain Monte Carlo method, with the EPRL spinfoam propagator as an example.

Spinfoams and high performance computing

Numerical methods are a powerful tool for doing calculations in spinfoam theory. We review the major frameworks available, their definition, and various applications. We start from $texttt{sl2cfoam-next}$, the state-of-the-art library to efficiently compute EPRL spin foam amplitudes based on the booster decomposition. We also review two alternative approaches based on the integration representation of the spinfoam amplitude: Firstly, the numerical computations of the complex critical points discover the curved geometries from the spinfoam amplitude and provides important evidence of resolving the flatness problem in the spinfoam theory. Lastly, we review the numerical estimation of observable expectation values based on the Lefschetz thimble and Markov-Chain Monte Carlo method, with the EPRL spinfoam propagator as an example.