Qiss

Gravitational edge modes: From Kac-Moody charges to Poincaré networks

We revisit the canonical framework for general relativity in its connection-vierbein formulation, recasting the Gauss law, the Bianchi identity and the space diffeomorphism bulk constraints as conservation laws for boundary surface charges, respectively electric, magnetic and momentum charges. Partitioning the space manifold into 3D regions glued together through their interfaces, we focus on a single domain and its punctured 2D boundary. The punctures carry a ladder of Kac-Moody edge modes, whose 0-modes represent the electric and momentum charges while the higher modes describe the stringy vibration modes of the 1D-boundary around each puncture. In particular, this allows to identify missing observables in the discretization scheme used in loop quantum gravity and leads to an enhanced theory upgrading spin networks to tube networks carrying Virasoro representations. In the limit where the tubes are contracted to 1D links and the string modes neglected, we do not just recover loop quantum gravity but obtain a more general structure: Poincar’e charge networks, which carry a representation of the 3D diffeomorphism boundary charges on top of the $mathrm{SU}(2)$ fluxes and gauge transformations.

The Aharonov-Bohm phase is locally generated (like all other quantum phases)

In the Aharonov-Bohm (AB) effect, a superposed charge acquires a detectable phase by enclosing an infinite solenoid, in a region where the solenoid’s electric and magnetic fields are zero. Its generation seems therefore explainable only by the local action of gauge-dependent potentials, not of gauge-independent fields. This was recently challenged by Vaidman, who explained the phase by the solenoid’s current interacting with the electron’s field (at the solenoid). Still, his model has a residual non-locality: it does not explain how the phase, generated at the solenoid, is detectable on the charge. In this paper we solve this non-locality explicitly, by quantising the field. We show that the AB phase is mediated locally by the entanglement between the charge and the photons, like all electromagnetic phases. We also predict a gauge-invariant value for the phase difference at each point along the charge’s path. We propose a realistic experiment to measure this phase difference locally, by partial quantum state tomography on the charge, without closing the interference loop.

Free Globularly Generated Double Categories II: The Canonical Double Projection

This is the second installment of a two part series of papers studying free globularly generated double categories. We introduce the canonical double projection construction. The canonical double projection translates information from free globularly generated double categories to double categories defined through the same set of globular and vertical data. We use the canonical double projection to define compatible formal linear functorial extensions of the Haagerup standard form and the Connes fusion operation to possibly-infinite indemorphisms between factors. We use the canonical double projection to prove that the free globularly generated double category construction is left adjoint to decorated horizontalization. We thus interpret free globularly generated double categories as formal decorated analogs of double categories of quintets and as generators for internalizations.

Necessary and Sufficient Conditions on Measurements of Quantum Channels

Quantum supermaps are a higher-order generalization of quantum maps, taking quantum maps to quantum maps. It is known that any completely positive, trace non-increasing (CPTNI) map can be performed as part of a quantum measurement. By providing an explicit counterexample we show that, instead, not every quantum supermap sending a quantum channel to a CPTNI map can be realized in a measurement on quantum channels. We find that the supermaps that can be implemented in this way are exactly those transforming quantum channels into CPTNI maps even when tensored with the identity supermap. We link this result to the fact that the principle of causality fails in the theory of quantum supermaps.

Quantum Compression of Tensor Network States

We design quantum compression algorithms for parametric families of tensor network states. We first establish an upper bound on the amount of memory needed to store an arbitrary state from a given state family. The bound is determined by the minimum cut of a suitable flow network, and is related to the flow of information from the manifold of parameters that specify the states to the physical systems in which the states are embodied. For given network topology and given edge dimensions, our upper bound is tight when all edge dimensions are powers of the same integer. When this condition is not met, the bound is optimal up to a multiplicative factor smaller than 1.585. We then provide a compression algorithm for general state families, and show that the algorithm runs in polynomial time for matriproduct states.

On the possibility of experimental detection of the discreteness of time

The Bose-Marletto-Vedral experiment tests a non-relativistic quantum effect due to a gravitational interaction. It has received attention because it may soon be within observational reach in the lab. We observe here that: (i) in relativistic language the experiment tests an interference effect between proper-time intervals; (ii) the relevant difference of proper times is of the order of the Planck time if the masses of the particles in the experiment are of the order of the Planck mass (micrograms); (iii) the experiment might open a window on the structure of time at the Planck scale: if time differences are discrete at this scale —as quantum gravity research may suggest— the Planckian discreteness of time could show up as quantum levels of a measurable entanglement entropy.

Experimental transmission of quantum information using a superposition of causal orders

Communication in a network generally takes place through a sequence of intermediate nodes connected by communication channels. In the standard theory of communication, it is assumed that the communication network is embedded in a classical spacetime, where the relative order of different nodes is well-defined. In principle, a quantum theory of spacetime could allow the order of the intermediate points between sender and receiver to be in a coherent superposition. Here we experimentally realise a table-top simulation of this exotic possibility on a photonic system, demonstrating high-fidelity transmission of quantum information over two noisy channels arranged in a superposition of two alternative causal orders.

Reversibility vs local creation/destruction

Consider a network that evolves reversibly, according to nearest neighbours interactions. Can its dynamics create/destroy nodes?. On the one hand, since the nodes are the principal carriers of information, it seems that they cannot be destroyed without jeopardising bijectivity. On the other hand, there are plenty of global functions from graphs to graphs that are non-vertex-preserving and bijective. The question has been answered negatively—in three different ways. Yet, in this paper we do obtain reversible local node creation/destruction—in three relaxed settings, whose equivalence we prove for robustness. We motivate our work both by theoretical computer science considerations (reversible computing, cellular automata extensions) and theoretical physics concerns (basic formalisms for discrete quantum gravity).

Reconstructing quantum theory from diagrammatic postulates

We present a reconstruction of finite-dimensional quantum theory where all of the postulates are stated in diagrammatic terms, making them intuitive. Equivalently, they are stated in category-theoretic terms, making them mathematically appealing. Again equivalently, they are stated in process-theoretic terms, establishing that the conceptual backbone of quantum theory concerns the manner in which systems and processes compose. Aside from the diagrammatic form, the key novel aspect of this reconstruction is the introduction of a new postulate, symmetric purification. Unlike the ordinary purification postulate, symmetric purification applies equally well to classical theory as well as quantum theory. Therefore we first reconstruct the full process theoretic description of quantum theory, consisting of composite classical-quantum systems and their interactions, before restricting ourselves to just the `fully quantum’ systems as the final step. We propose two novel alternative manners of doing so, `no-leaking’ (roughly that information gain causes disturbance) and `purity of cups’ (roughly the existence of entangled states). Interestingly, these turn out to be equivalent in any process theory with cups & caps. Additionally, we show how the standard purification postulate can be seen as an immediate consequence of the symmetric purification postulate and purity of cups. Other tangential results concern the specific frameworks of generalised probabilistic theories (GPTs) and process theories (a.k.a. CQM). Firstly, we provide a diagrammatic presentation of GPTs, which, henceforth, can be subsumed under process theories. Secondly, we argue that the `sharp dagger’ is indeed the right choice of a dagger structure as this sharpness is vital to the reconstruction.

Experimental entanglement of temporal order

The study of causal relations has recently been applied to the quantum realm, leading to the discovery that not all physical processes have a definite causal structure. While indefinite causal processes have previously been experimentally shown, these proofs relied on the quantum description of the experiments. Yet, the same experimental data could also be compatible with definite causal structures within different descriptions. Here, we present the first demonstration of indefinite temporal order outside of quantum formalism. We show that our experimental outcomes are incompatible with a class of generalised probabilistic theories satisfying the assumptions of locality and definite temporal order. To this end, we derive physical constraints (in the form of a Bell-like inequality) on experimental outcomes within such a class of theories. We then experimentally invalidate these theories by violating the inequality using entangled temporal order. This provides experimental evidence that there exist correlations in nature which are incompatible with the assumptions of locality and definite temporal order.