## Which theories have a measurement problem?

It is shown that any theory that has certain properties has a measurement problem, in the sense that it makes predictions that are incompatible with measurement outcomes being absolute (that is, unique and non-relational). These properties are Bell Nonlocality, Information Preservation, and Local Dynamics. The result is extended by deriving Local Dynamics from No Superluminal Influences, Separable Dynamics, and Consistent Embeddings. As well as explaining why the existing Wigner’s-friend-inspired no-go theorems hold for quantum theory, these results also shed light on whether a future theory of physics might overcome the measurement problem. In particular, they suggest the possibility of a theory in which absoluteness is maintained, but without rejecting relativity theory (as in Bohm theory) or embracing objective collapses (as in GRW theory).