July 1719

Tomography of clock signals using the simplest possible reference

We show that finite physical clocks always have well-behaved signals, namely that every waiting-time distribution generated by a physical process on a system of finite size is guaranteed to be bounded by a decay envelope. Following this consideration, we show that one can reconstruct the distribution using only operationally available information, namely, that of the ordering of the ticks of one clock with the respect to those of another clock (which we call the reference), and that the simplest possible reference clock — a Poisson process — suffices.

The Bose-Marletto-Vedral proposal in different frames of reference and the quantum nature of gravity

Observing spatial entanglement in the Bose-Marletto-Vedral (BMV) experiment would demonstrate the existence of non-classical properties of the gravitational field. We show that the special relativistic invariance of the linear regime of general relativity implies that all the components of the gravitational potential must be non-classical. This is simply necessary in order to describe the BMV entanglement consistently across different inertial frames of reference. On the other hand, we show that the entanglement in accelerated frames could differ from that in stationary frames.