QISS Workshop in Oxford
25-29 July 2023
This paper builds on no-go theorems to the effect that quantum theory is inconsistent with observations being absolute; that is, unique and non-relative. Unlike the existing no-go results, the one introduced here is based on a theory-independent absoluteness assumption, and there is no need to assume the validity of standard probability theory or of modal logic. The contradiction is derived by assuming that quantum theory applies in any inertial reference frame; accordingly, the result also illuminates a tension between special relativity and absoluteness.
It is shown that any theory that has certain properties has a measurement problem, in the sense that it makes predictions that are incompatible with measurement outcomes being absolute (that is, unique and non-relational). These properties are Bell Nonlocality, Information Preservation, and Local Dynamics. The result is extended by deriving Local Dynamics from No Superluminal Influences, Separable Dynamics, and Consistent Embeddings. As well as explaining why the existing Wigner’s-friend-inspired no-go theorems hold for quantum theory, these results also shed light on whether a future theory of physics might overcome the measurement problem. In particular, they suggest the possibility of a theory in which absoluteness is maintained, but without rejecting relativity theory (as in Bohm theory) or embracing objective collapses (as in GRW theory).
Efficient characterization of continuous-variable quantum states is important for quantum communication, quantum sensing, quantum simulation and quantum computing. However, conventional quantum state tomography and recently proposed classical shadow tomography require truncation of the Hilbert space or phase space and the resulting sample complexity scales exponentially with the number of modes. In this paper, we propose a quantum-enhanced learning strategy for continuous-variable states overcoming the previous shortcomings. We use this to estimate the point values of a state characteristic function, which is useful for quantum state tomography and inferring physical properties like quantum fidelity, nonclassicality and quantum non-Gaussianity. We show that for any continuous-variable quantum states $rho$ with reflection symmetry – for example Gaussian states with zero mean values, Fock states, Gottesman-Kitaev-Preskill states, Schr”odinger cat states and binomial code states – on practical quantum devices we only need a constant number of copies of state $rho$ to accurately estimate the square of its characteristic function at arbitrary phase-space points. This is achieved by performinig a balanced beam splitter on two copies of $rho$ followed by homodyne measurements. Based on this result
Existing work on quantum causal structure assumes that one can perform arbitrary operations on the systems of interest. But this condition is often not met. Here, we extend the framework for quantum causal modelling to situations where a system can suffer sectorial constraints, that is, restrictions on the orthogonal subspaces of its Hilbert space that may be mapped to one another. Our framework (a) proves that a number of different intuitions about causal relations turn out to be equivalent; (b) shows that quantum causal structures in the presence of sectorial constraints can be represented with a directed graph; and (c) defines a fine-graining of the causal structure in which the individual sectors of a system bear causal relations. As an example, we apply our framework to purported photonic implementations of the quantum switch to show that while their coarse-grained causal structure is cyclic, their fine-grained causal structure is acyclic. We therefore conclude that these experiments realize indefinite causal order only in a weak sense. Notably, this is the first argument to this effect that is not rooted in the assumption that the causal relata must be localized in spacetime.
We consider the quantum version of inferring the causal relation between events. There has been recent progress towards identifying minimal interventions and observations needed. We here show, by means of constructing an explicit scheme, that quantum observations alone are sufficient for quantum causal inference for the case of a bipartite quantum system with measurements at two times. Our scheme involves the derivation of a closed-form expression for the space-time pseudo-density matrix associated with many times and qubits. This matrix can be determined by coarse-grained quantum observations alone. We show that from this matrix one can infer the causal structure via the sign of a particular function called a causal monotone. Our results show that for quantum processes one can infer the causal structure solely from correlations between observations at different times.
In this work, we present a generic approach to transform CSS codes by building upon their equivalence to phase-free ZX diagrams. Using the ZX calculus, we demonstrate diagrammatic transformations between encoding maps associated with different codes. As a motivating example, we give explicit transformations between the Steane code and the quantum Reed-Muller code, since by switching between these two codes, one can obtain a fault-tolerant universal gate set. To this end, we propose a bidirectional rewrite rule to find a (not necessarily transversal) physical implementation for any logical ZX diagram in any CSS code. We then focus on two code transformation techniques: $textit{code morphing}$, a procedure that transforms a code while retaining its fault-tolerant gates, and $textit{gauge fixing}$, where complimentary codes can be obtained from a common subsystem code (e.g., the Steane and the quantum Reed-Muller codes from the [[15,1,3,3]] code). We provide explicit graphical derivations for these techniques and show how ZX and graphical encoder maps relate several equivalent perspectives on these code transforming operations.
Causal inequalities are device-independent constraints on correlations realizable via local operations under the assumption of definite causal order between these operations. While causal inequalities in the bipartite scenario require nonclassical resources within the process-matrix framework for their violation, there exist tripartite causal inequalities that admit violations with classical resources. The tripartite case puts into question the status of a causal inequality violation as a witness of nonclassicality, i.e., there is no a priori reason to believe that quantum effects are in general necessary for a causal inequality violation. Here we propose a notion of classicality for correlations–termed deterministic consistency–that goes beyond causal inequalities. We refer to the failure of deterministic consistency for a correlation as its antinomicity, which serves as our notion of nonclassicality. Deterministic consistency is motivated by a careful consideration of the appropriate generalization of Bell inequalities–which serve as witnesses of nonclassicality for non-signalling correlations–to the case of correlations without any non-signalling constraints. This naturally leads us to the classical deterministic limit of the process matrix framework as the appropriate analogue of a local hidden variable model. We then define a hierarchy of sets of correlations–from the classical to the most nonclassical–and prove strict inclusions between them. We also propose a measure for the antinomicity of correlations–termed ‘robustness of antinomy’–and apply our framework in bipartite and tripartite scenarios. A key contribution of this work is an explicit nonclassicality witness that goes beyond causal inequalities, inspired by a modification of the Guess Your Neighbour’s Input (GYNI) game that we term the Guess Your Neighbour’s Input or NOT (GYNIN) game.
This paper is a transcript of the dialogue between Carlo Rovelli and Mike Jackson after Rovelli’s delivery of the 2021 Annual Mike Jackson Lecture, hosted by the Centre for Systems Studies at the University of Hull. The dialogue covers a range of topics, including how Rovelli developed a sense of curiosity in his youth; the connection between his interests in science and politics; the pathology of disciplinary divisions in academia; the value of Bogdanov’s transdisciplinarity; Rovelli’s theory of quantum gravity; the notions of granularity, indeterminism and relationality underpinning quantum mechanics; the role of the observer; mistaken uses of quantum mechanics; relational and network views of the world; how the discipline of Physics is becoming more systemic; the concept of levels of analysis in relation to nature and human inquiry; and the future for humanity.
In this chapter we take up the quantum Riemannian geometry of a spatial slice of spacetime. While researchers are still facing the challenge of observing quantum gravity, there is a geometrical core to loop quantum gravity that does much to define the approach. This core is the quantum character of its geometrical observables: space and spacetime are built up out of Planck-scale quantum grains. The interrelations between these grains are described by spin networks, graphs whose edges capture the bounding areas of the interconnected nodes, which encode the extent of each grain. We explain how quantum Riemannian geometry emerges from two different approaches: in the first half of the chapter we take the perspective of continuum geometry and explain how quantum geometry emerges from a few principles, such as the general rules of canonical quantization of field theories, a classical formulation of general relativity in which it appears embedded in the phase space of Yang-Mills theory, and general covariance. In the second half of the chapter we show that quantum geometry also emerges from the direct quantization of the finite number of degrees of freedom of the gravitational field encoded in discrete geometries. These two approaches are complimentary and are offered to assist readers with different backgrounds enter the compelling arena of quantum Riemannian geometry.