July 2023

Discreteness Unravels the Black Hole Information Puzzle: Insights from a Quantum Gravity Toy Model

The black hole information puzzle can be resolved if two conditions are met. Firstly, if the information of what falls inside a black hole remains encoded in degrees of freedom that persist after the black hole completely evaporates. These degrees of freedom should be capable of purifying the information. Secondly, if these purifying degrees of freedom do not significantly contribute to the system’s energy, as the macroscopic mass of the initial black hole has been radiated away as Hawking radiation to infinity. The presence of microscopic degrees of freedom at the Planck scale provides a natural mechanism for achieving these two conditions without running into the problem of the large pair-creation probabilities of standard remnant scenarios. In the context of Hawking radiation, the first condition implies that correlations between the ‘in’ and ‘out’ Hawking partner particles need to be transferred to correlations between the microscopic degrees of freedom and the ‘out’ partners in the radiation. This transfer occurs dynamically when the ‘in’ partners reach the singularity inside the black hole, entering the UV regime of quantum gravity where the interaction with the microscopic degrees of freedom becomes strong. The second condition suggests that the conventional notion of the vacuum’s uniqueness in quantum field theory should fail when considering the full quantum gravity degrees of freedom. In this paper, we demonstrate both key aspects of this mechanism using a solvable toy model of a quantum black hole inspired by loop quantum gravity.

Local Inaccessibility of Random Classical Information : Conditional Nonlocality demands Entanglement

Discrimination of quantum states under local operations and classical communication (LOCC) is an intriguing question in the context of local retrieval of classical information, encoded in the multipartite quantum systems. All the local quantum state discrimination premises, considered so far, mimic a basic communication set-up, where the spatially separated decoding devices are independent of any additional input. Here, exploring a generalized communication scenario we introduce a framework for input-dependent local quantum state discrimination, which we call local random authentication (LRA). Referring to the term nonlocality, often used to indicate the impossibility of local state discrimination, we coin the term conditional nonlocality for the impossibility associated with the task LRA. We report that conditional nonlocality necessitates the presence of entangled states in the ensemble, a feature absent from erstwhile nonlocality arguments based on local state discrimination. Conversely, all the states in a complete basis set being entangled implies conditional nonlocality. However, the impossibility of LRA also exhibits more conditional nonlocality with less entanglement. The relation between the possibility of LRA and local state discrimination for sets of multipartite quantum states, both in the perfect and conclusive cases, has also been established. The results highlight a completely new aspect of the interplay between the security of information in a network and quantum entanglement under the LOCC paradigm.

The Generative Programs Framework

Recently there has been significant interest in using causal modelling techniques to understand the structure of physical theories. However, the notion of `causation’ is limiting – insisting that a physical theory must involve causal structure already places significant constraints on the form that theory may take. Thus in this paper, we aim to set out a more general structural framework. We argue that any quantitative physical theory can be represented in the form of a generative program, i.e. a list of instructions showing how to generate the empirical data; the information-processing structure associated with this program can be represented by a directed acyclic graph (DAG). We suggest that these graphs can be interpreted as encoding relations of `ontological priority,’ and that ontological priority is a suitable generalisation of causation which applies even to theories that don’t have a natural causal structure. We discuss some applications of our framework to philosophical questions about realism, operationalism, free will, locality and fine-tuning.

Discreteness Unravels the Black Hole Information Puzzle: Insights from a Quantum Gravity Toy Model

The black hole information puzzle can be resolved if two conditions are met. Firstly, if the information of what falls inside a black hole remains encoded in degrees of freedom that persist after the black hole completely evaporates. These degrees of freedom should be capable of purifying the information. Secondly, if these purifying degrees of freedom do not significantly contribute to the system’s energy, as the macroscopic mass of the initial black hole has been radiated away as Hawking radiation to infinity. The presence of microscopic degrees of freedom at the Planck scale provides a natural mechanism for achieving these two conditions without running into the problem of the large pair-creation probabilities of standard remnant scenarios. In the context of Hawking radiation, the first condition implies that correlations between the ‘in’ and ‘out’ Hawking partner particles need to be transferred to correlations between the microscopic degrees of freedom and the ‘out’ partners in the radiation. This transfer occurs dynamically when the ‘in’ partners reach the singularity inside the black hole, entering the UV regime of quantum gravity where the interaction with the microscopic degrees of freedom becomes strong. The second condition suggests that the conventional notion of the vacuum’s uniqueness in quantum field theory should fail when considering the full quantum gravity degrees of freedom. In this paper, we demonstrate both key aspects of this mechanism using a solvable toy model of a quantum black hole inspired by loop quantum gravity.

Local Inaccessibility of Random Classical Information : Conditional Nonlocality demands Entanglement

Discrimination of quantum states under local operations and classical communication (LOCC) is an intriguing question in the context of local retrieval of classical information, encoded in the multipartite quantum systems. All the local quantum state discrimination premises, considered so far, mimic a basic communication set-up, where the spatially separated decoding devices are independent of any additional input. Here, exploring a generalized communication scenario we introduce a framework for input-dependent local quantum state discrimination, which we call local random authentication (LRA). Referring to the term nonlocality, often used to indicate the impossibility of local state discrimination, we coin the term conditional nonlocality for the impossibility associated with the task LRA. We report that conditional nonlocality necessitates the presence of entangled states in the ensemble, a feature absent from erstwhile nonlocality arguments based on local state discrimination. Conversely, all the states in a complete basis set being entangled implies conditional nonlocality. However, the impossibility of LRA also exhibits more conditional nonlocality with less entanglement. The relation between the possibility of LRA and local state discrimination for sets of multipartite quantum states, both in the perfect and conclusive cases, has also been established. The results highlight a completely new aspect of the interplay between the security of information in a network and quantum entanglement under the LOCC paradigm.

Global Kruskal-Szekeres coordinates for Reissner-Nordström spacetime

I derive a smooth and global Kruskal-Szekeres coordinate chart for the maximal extension of the non-extremal Reissner-Nordstr”om geometry that provides a generalization to the standard inner and outer Kruskal-Szekeres coordinates. The Kruskal-Szekeres diagram associated to this coordinate chart, whose existence is an interesting fact in and on itself, provides a simple alternative with a transparent physical interpretation to the conformal diagram of the spacetime.

A no-go theorem for absolute observed events without inequalities or modal logic

This paper builds on no-go theorems to the effect that quantum theory is inconsistent with observations being absolute; that is, unique and non-relative. Unlike the existing no-go results, the one introduced here is based on a theory-independent absoluteness assumption, and there is no need to assume the validity of standard probability theory or of modal logic. The contradiction is derived by assuming that quantum theory applies in any inertial reference frame; accordingly, the result also illuminates a tension between special relativity and absoluteness.