July 2023

Which theories have a measurement problem?

It is shown that any theory that has certain properties has a measurement problem, in the sense that it makes predictions that are incompatible with measurement outcomes being absolute (that is, unique and non-relational). These properties are Bell Nonlocality, Information Preservation, and Local Dynamics. The result is extended by deriving Local Dynamics from No Superluminal Influences, Separable Dynamics, and Consistent Embeddings. As well as explaining why the existing Wigner’s-friend-inspired no-go theorems hold for quantum theory, these results also shed light on whether a future theory of physics might overcome the measurement problem. In particular, they suggest the possibility of a theory in which absoluteness is maintained, but without rejecting relativity theory (as in Bohm theory) or embracing objective collapses (as in GRW theory).

Quantum-Enhanced Learning of Continuous-Variable Quantum States

Efficient characterization of continuous-variable quantum states is important for quantum communication, quantum sensing, quantum simulation and quantum computing. However, conventional quantum state tomography and recently proposed classical shadow tomography require truncation of the Hilbert space or phase space and the resulting sample complexity scales exponentially with the number of modes. In this paper, we propose a quantum-enhanced learning strategy for continuous-variable states overcoming the previous shortcomings. We use this to estimate the point values of a state characteristic function, which is useful for quantum state tomography and inferring physical properties like quantum fidelity, nonclassicality and quantum non-Gaussianity. We show that for any continuous-variable quantum states $rho$ with reflection symmetry – for example Gaussian states with zero mean values, Fock states, Gottesman-Kitaev-Preskill states, Schr”odinger cat states and binomial code states – on practical quantum devices we only need a constant number of copies of state $rho$ to accurately estimate the square of its characteristic function at arbitrary phase-space points. This is achieved by performinig a balanced beam splitter on two copies of $rho$ followed by homodyne measurements. Based on this result, we show that, given nonlocal quantum measurements, for any $k$-mode continuous-variable states $rho$ having reflection symmetry, we only require $O(log M)$ copies of $rho$ to accurately estimate its characteristic function values at any $M$ phase-space points. Furthermore, the number of copies is independent of $k$. This can be compared with restricted conventional approach, where $Omega(M)$ copies are required to estimate the characteristic function values at $M$ arbitrary phase-space points.

Causal structure in the presence of sectorial constraints, with application to the quantum switch

Existing work on quantum causal structure assumes that one can perform arbitrary operations on the systems of interest. But this condition is often not met. Here, we extend the framework for quantum causal modelling to situations where a system can suffer sectorial constraints, that is, restrictions on the orthogonal subspaces of its Hilbert space that may be mapped to one another. Our framework (a) proves that a number of different intuitions about causal relations turn out to be equivalent; (b) shows that quantum causal structures in the presence of sectorial constraints can be represented with a directed graph; and (c) defines a fine-graining of the causal structure in which the individual sectors of a system bear causal relations. As an example, we apply our framework to purported photonic implementations of the quantum switch to show that while their coarse-grained causal structure is cyclic, their fine-grained causal structure is acyclic. We therefore conclude that these experiments realize indefinite causal order only in a weak sense. Notably, this is the first argument to this effect that is not rooted in the assumption that the causal relata must be localized in spacetime.

Quantum Causal Inference with Extremely Light Touch

We consider the quantum version of inferring the causal relation between events. There has been recent progress towards identifying minimal interventions and observations needed. We here show, by means of constructing an explicit scheme, that quantum observations alone are sufficient for quantum causal inference for the case of a bipartite quantum system with measurements at two times. Our scheme involves the derivation of a closed-form expression for the space-time pseudo-density matrix associated with many times and qubits. This matrix can be determined by coarse-grained quantum observations alone. We show that from this matrix one can infer the causal structure via the sign of a particular function called a causal monotone. Our results show that for quantum processes one can infer the causal structure solely from correlations between observations at different times.

A no-go theorem for absolute observed events without inequalities or modal logic

This paper builds on no-go theorems to the effect that quantum theory is inconsistent with observations being absolute; that is, unique and non-relative. Unlike the existing no-go results, the one introduced here is based on a theory-independent absoluteness assumption, and there is no need to assume the validity of standard probability theory or of modal logic. The contradiction is derived by assuming that quantum theory applies in any inertial reference frame; accordingly, the result also illuminates a tension between special relativity and absoluteness.

Which theories have a measurement problem?

It is shown that any theory that has certain properties has a measurement problem, in the sense that it makes predictions that are incompatible with measurement outcomes being absolute (that is, unique and non-relational). These properties are Bell Nonlocality, Information Preservation, and Local Dynamics. The result is extended by deriving Local Dynamics from No Superluminal Influences, Separable Dynamics, and Consistent Embeddings. As well as explaining why the existing Wigner’s-friend-inspired no-go theorems hold for quantum theory, these results also shed light on whether a future theory of physics might overcome the measurement problem. In particular, they suggest the possibility of a theory in which absoluteness is maintained, but without rejecting relativity theory (as in Bohm theory) or embracing objective collapses (as in GRW theory).

Quantum-Enhanced Learning of Continuous-Variable Quantum States

Efficient characterization of continuous-variable quantum states is important for quantum communication, quantum sensing, quantum simulation and quantum computing. However, conventional quantum state tomography and recently proposed classical shadow tomography require truncation of the Hilbert space or phase space and the resulting sample complexity scales exponentially with the number of modes. In this paper, we propose a quantum-enhanced learning strategy for continuous-variable states overcoming the previous shortcomings. We use this to estimate the point values of a state characteristic function, which is useful for quantum state tomography and inferring physical properties like quantum fidelity, nonclassicality and quantum non-Gaussianity. We show that for any continuous-variable quantum states $rho$ with reflection symmetry – for example Gaussian states with zero mean values, Fock states, Gottesman-Kitaev-Preskill states, Schr”odinger cat states and binomial code states – on practical quantum devices we only need a constant number of copies of state $rho$ to accurately estimate the square of its characteristic function at arbitrary phase-space points. This is achieved by performinig a balanced beam splitter on two copies of $rho$ followed by homodyne measurements. Based on this result

Causal structure in the presence of sectorial constraints, with application to the quantum switch

Existing work on quantum causal structure assumes that one can perform arbitrary operations on the systems of interest. But this condition is often not met. Here, we extend the framework for quantum causal modelling to situations where a system can suffer sectorial constraints, that is, restrictions on the orthogonal subspaces of its Hilbert space that may be mapped to one another. Our framework (a) proves that a number of different intuitions about causal relations turn out to be equivalent; (b) shows that quantum causal structures in the presence of sectorial constraints can be represented with a directed graph; and (c) defines a fine-graining of the causal structure in which the individual sectors of a system bear causal relations. As an example, we apply our framework to purported photonic implementations of the quantum switch to show that while their coarse-grained causal structure is cyclic, their fine-grained causal structure is acyclic. We therefore conclude that these experiments realize indefinite causal order only in a weak sense. Notably, this is the first argument to this effect that is not rooted in the assumption that the causal relata must be localized in spacetime.

Quantum Causal Inference with Extremely Light Touch

We consider the quantum version of inferring the causal relation between events. There has been recent progress towards identifying minimal interventions and observations needed. We here show, by means of constructing an explicit scheme, that quantum observations alone are sufficient for quantum causal inference for the case of a bipartite quantum system with measurements at two times. Our scheme involves the derivation of a closed-form expression for the space-time pseudo-density matrix associated with many times and qubits. This matrix can be determined by coarse-grained quantum observations alone. We show that from this matrix one can infer the causal structure via the sign of a particular function called a causal monotone. Our results show that for quantum processes one can infer the causal structure solely from correlations between observations at different times.

Graphical CSS Code Transformation Using ZX Calculus

In this work, we present a generic approach to transform CSS codes by building upon their equivalence to phase-free ZX diagrams. Using the ZX calculus, we demonstrate diagrammatic transformations between encoding maps associated with different codes. As a motivating example, we give explicit transformations between the Steane code and the quantum Reed-Muller code, since by switching between these two codes, one can obtain a fault-tolerant universal gate set. To this end, we propose a bidirectional rewrite rule to find a (not necessarily transversal) physical implementation for any logical ZX diagram in any CSS code. We then focus on two code transformation techniques: $textit{code morphing}$, a procedure that transforms a code while retaining its fault-tolerant gates, and $textit{gauge fixing}$, where complimentary codes can be obtained from a common subsystem code (e.g., the Steane and the quantum Reed-Muller codes from the [[15,1,3,3]] code). We provide explicit graphical derivations for these techniques and show how ZX and graphical encoder maps relate several equivalent perspectives on these code transforming operations.