Qiss

Hybrid nonlocality via atom photon interactions with and without impurities

To obtain Bell statistics from hybrid states composed of finite- and infinite-dimensional systems, we propose a hybrid measurement scheme, in which the continuous mode is measured using the generalized pseudospin operators, while the finite (two)-dimensional system is measured in the usual Pauli basis. Maximizing the Bell expression with these measurements leads to the violations of local realism which is referred to as hybrid nonlocality. We demonstrate the utility of our strategy in a realistic setting of cavity quantum electrodynamics, where an atom interacts with a single mode of an electromagnetic field under the Jaynes-Cummings Hamiltonian. We dynamically compute the quenched averaged value of hybrid nonlocality in imperfect situations by incorporating disorder in the atom-cavity coupling strength. In the disordered case, we introduce two kinds of measurement scenarios to determine the Bell statistics — in one situation, experimentalists can tune the optimal settings according to the interaction strength while such controlled power is absent in the other case. In contrast to the oscillatory behavior observed in the ordered case, the quenched averaged violation saturates to a finite value in some parameter regimes in the former case, thereby highlighting an advantage of disordered systems. We also examine the connection between Wigner negativity and hybrid nonlocality.

Indeterminism and Bell nonlocality with classical systems

A popular interpretation of classical physics assumes that every classical system is in a well-defined pure state, which may be unknown to the observer, but is nevertheless part of the physical reality. Here we show that this interpretation is not always tenable. We construct a toy theory that includes all possible classical systems, alongside with another set of systems, called anti-classical, which are dual to the classical ones in a similar way as anti-particles are dual to particles. In the world of our toy theory, every classical system can be entangled with an anti-classical partner, and every classical mixed state can be obtained from a pure entangled state by discarding the anti-classical part. In the presence of such entanglement, it is impossible to assign a well-defined pure state to classical systems alone. Even more strongly, we prove that entangled states of classical/anti-classical composites exhibit activation of Bell nonlocality, and we use this fact to rule out every ontological model in which individual classical systems are assigned well-defined local states.

Unextendible product bases from orthogonality graphs

Unextendible product bases (UPBs) play a key role in the study of quantum entanglement and nonlocality. A famous open question is whether there exist genuinely unextendible product bases (GUPBs), namely multipartite product bases that are unextendible with respect to every possible bipartition. Here we shed light on this question by providing a characterization of UPBs and GUPBs in terms of orthogonality graphs. Building on this connection, we develop a method for constructing UPBs in low dimensions, and we derive a lower bound on the size of any GUPB, significantly improving over the state of the art. Moreover, we show that every minimal GUPB saturating our bound must be associated to regular graphs. Finally, we discuss a possible path towards the construction of a minimal GUPB in a tripartite system of minimal local dimension.

Geometry Transition in Spinfoams

We show how the fixed-spin asymptotics of the EPRL model can be used to perform the spin-sum for spin foam amplitudes defined on fixed two-complexes without interior faces and contracted with coherent spin-network states peaked on a discrete simplicial geometry with macroscopic areas. We work in the representation given in Ref. 1. We first rederive the latter in a different way suitable for our purposes. We then extend this representation to 2-complexes with a boundary and derive its relation to the coherent state representation. We give the measure providing the resolution of the identity for Thiemann’s state in the twisted geometry parametrization. The above then permit us to put everything together with other results in the literature and show how the spin sum can be performed analytically for the regime of interest here. These results are relevant to analytic investigations regarding the transition of a black hole to a white hole geometry. In particular, this work gives detailed technique that was the basis of estimate for the black to white bounce appeared in Ref. 2. These results may also be relevant for applications of spinfoams to investigate the possibility of a ‘big bounce’.

Quantum Reference Frames at the Boundary of Spacetime

An analysis is given of the local phase space of gravity coupled to matter to second order in perturbation theory. Working in local regions with boundaries at finite distance, we identify matter, Coulomb, and additional boundary modes. The boundary modes take the role of reference frames for both diffeomorphisms and internal Lorentz rotations. Passing to the quantum level, we identify the constraints that link the bulk and boundary modes. The constraints take the form of a multi-fingered Schr”odinger equation, which determines the relational evolution of the quantum states in the bulk with respect to the quantum reference fields at the boundary.

Loop Quantum Gravity and Quantum Information

We summarize recent developments at the interface of quantum gravity and quantum information, and discuss applications to the quantum geometry of space in loop quantum gravity. In particular, we describe the notions of link entanglement, intertwiner entanglement, and boundary spin entanglement in a spin-network state. We discuss how these notions encode the gluing of quanta of space and their relevance for the reconstruction of a quantum geometry from a network of entanglement structures. We then focus on the geometric entanglement entropy of spin-network states at fixed spins, treated as a many-body system of quantum polyhedra, and discuss the hierarchy of volume-law, area-law and zero-law states. Using information theoretic bounds on the uncertainty of geometric observables and on their correlations, we identify area-law states as the corner of the Hilbert space that encodes a semiclassical geometry, and the geometric entanglement entropy as a probe of semiclassicality.

Summing bulk quantum numbers with Monte Carlo in spin foam theories

We introduce a strategy to compute EPRL spin foam amplitudes with many internal faces numerically. We work with texttt{sl2cfoam-next}, the state-of-the-art framework to numerically evaluate spin foam transition amplitudes. We find that uniform sampling Monte Carlo is exceptionally effective in approximating the sum over internal quantum numbers of a spin foam amplitude, considerably reducing the computational resources necessary. We apply it to compute large volume divergences of the theory and find surprising numerical evidence that the EPRL vertex renormalization amplitude is instead finite.

Any consistent coupling between classical gravity and quantum matter is fundamentally irreversible

When gravity is sourced by a quantum system, there is tension between its role as the mediator of a fundamental interaction, which is expected to acquire nonclassical features, and its role in determining the properties of spacetime, which is inherently classical. Fundamentally, this tension should result in breaking one of the fundamental principles of quantum theory or general relativity, but it is usually hard to assess which one without resorting to a specific model. Here, we answer this question in a theory-independent way using General Probabilistic Theories (GPTs). We consider the interactions of the gravitational field with a single matter system, and derive a no-go theorem showing that when gravity is classical at least one of the following assumptions needs to be violated: (i) Matter degrees of freedom are described by fully non-classical degrees of freedom; (ii) Interactions between matter degrees of freedom and the gravitational field are reversible; (iii) Matter degrees of freedom back-react on the gravitational field. We argue that this implies that theories of classical gravity and quantum matter must be fundamentally irreversible, as is the case in the recent model of Oppenheim et al. Conversely if we require that the interaction between quantum matter and the gravitational field are reversible, then the gravitational field must be non-classical.

Do We Have Any Viable Solution to the Measurement Problem?

Wallace (2022) has recently argued that a number of popular approaches to the measurement problem can’t be fully extended to relativistic quantum mechanics and quantum field theory; Wallace thus contends that as things currently stand, only the unitary-only approaches to the measurement problem are viable. However, the unitary-only approaches face serious epistemic problems which may threaten their viability as solutions, and thus we consider that it remains an urgent outstanding problem to find a viable solution to the measurement problem which can be extended to relativistic quantum mechanics. In this article we seek to understand in general terms what such a thing might look like. We argue that in order to avoid serious epistemic problems, the solution must be a single-world realist approach, and we further argue that any single-world realist approach which is able to reproduce the predictions of relativistic quantum mechanics will most likely have the property that our observable reality does not supervene on dynamical, precisely-defined microscopic beables. Thus we suggest three possible routes for further exploration: observable reality could be approximate and emergent, as in relational quantum mechanics with the addition of cross-perspective links, or observable reality could supervene on beables which are not microscopically defined, as in the consistent histories approach, or observable reality could supervene on beables which are not dynamical, as in Kent’s solution to the Lorentzian classical reality problem. We conclude that once all of these issues are taken into account, the options for a viable solution to the measurement problem are significantly narrowed down.

Modelling quantum particles falling into a black hole: the deep interior limit

In this paper we construct a solvable toy model of the quantum dynamics of the interior of a spherical black hole with falling spherical scalar field excitations. We first argue about how some aspects of the quantum gravity dynamics of realistic black holes emitting Hawking radiation can be modelled using Kantowski-Sachs solutions with a massless scalar field when one focuses on the deep interior region $rll M$ (including the singularity). Further, we show that in the $rll M$ regime, and in suitable variables, the KS model becomes exactly solvable at both the classical and quantum levels. The quantum dynamics inspired by loop quantum gravity is revisited. We propose a natural polymer-quantization where the area $a$ of the orbits of the rotation group is quantized. The polymer (or loop) dynamics is closely related with the Schroedinger dynamics away from the singularity with a form of continuum limit naturally emerging from the polymer treatment. The Dirac observable associated to the mass is quantized and shown to have an infinite degeneracy associated to the so-called $epsilon$-sectors. Suitable continuum superpositions of these are well defined distributions in the fundamental Hilbert space and satisfy the continuum Schroedinger dynamics.