Qiss

Witnessing superpositions of causal orders by weak measurements at a given time

The questions we raise in this letter are as follows: What is the most general representation of a quantum state at a single time? Can we adapt the current representations to the scenarios in which the order of quantum operations are coherently or incoherently superposed? If so, what is the relation between the state at a given time and the uncertainty in the order of events before and after it? By establishing the relationship of two-state vector formalism with pseudo-density operators, we introduce the notion of single-time pseudo-state which can be constructed by either ideal or weak measurements. We show that the eigenspectrum in the latter case enables us to discriminate between the coherent and incoherent superpositions of causal orders in which the pre- and post-selection measurements are interchanged with a non-zero probability. Finally, we discuss some of the possible experimental realizations in existing photonic setups.

Inference of gravitational field superposition from quantum measurements

Experiments are beginning to probe the interaction of quantum particles with gravitational fields beyond the uniform-field regime. In non-relativistic quantum mechanics, the gravitational field in such experiments can be written as a superposition state. We empirically demonstrate that alternative theories of gravity can avoid gravitational superposition states only by decoupling the gravitational field energy from the quantum particle’s time evolution. Furthermore, such theories must specify a preferred quantum reference frame in which the equations of motion are valid. To the extent that these properties are theoretically implausible, recent experiments provide indirect evidence that gravity has quantum features. Proposed experiments with superposed gravitational sources would provide even stronger evidence that gravity is nonclassical.

Quantum States of Fields for Quantum Split Sources

Field mediated entanglement experiments probe the quantum superposition of macroscopically distinct field configurations. We show that this phenomenon can be described by using a transparent quantum field theoretical formulation of electromagnetism and gravity in the field basis. The strength of such a description is that it explicitly displays the superposition of macroscopically distinct states of the field. In the case of (linearised) quantum general relativity, this formulation exhibits the quantum superposition of geometries giving rise to the effect.

Existence of processes violating causal inequalities on time-delocalised subsystems

It has been shown that it is theoretically possible for there to exist quantum and classical processes in which the operations performed by separate parties do not occur in a well-defined causal order. A central question is whether and how such processes can be realised in practice. In order to provide a rigorous argument for the notion that certain such processes have a realisation in standard quantum theory, the concept of time-delocalised quantum subsystem has been introduced. In this paper, we show that realisations on time-delocalised subsystems exist for all unitary extensions of tripartite processes. Remarkably, this class contains processes that violate causal inequalities, i.e., that can generate correlations that witness the incompatibility with definite causal order in a device-independent manner. We consider a known striking example of such a tripartite classical process that has a unitary extension, and study its realisation on time-delocalised subsystems. We then discuss the question of what a violation of causal inequalities implies in this setting, and argue that it is indeed a meaningful concept to show the absence of a definite causal order between the variables of interest.

Does Science need Intersubjectivity? The Problem of Confirmation in Orthodox Interpretations of Quantum Mechanics

Any successful interpretation of quantum mechanics must explain how our empirical evidence allows us to come to know about quantum mechanics. In this article, we argue that this vital criterion is not met by the class of ‘orthodox interpretations,’ which includes QBism, neo-Copenhagen interpretations, and some versions of relational quantum mechanics. We demonstrate that intersubjectivity fails in radical ways in these approaches, and we explain why intersubjectivity matters for empirical confirmation. We take a detailed look at the way in which belief-updating might work in the kind of universe postulated by an orthodox interpretation, and argue that observers in such a universe are unable to escape their own perspective in order to learn about the structure of the set of perspectives that is supposed to make up reality according to these interpretations. We also argue that in some versions of these interpretations it is not even possible to use one’s own relative frequencies for empirical confirmation. Ultimately we conclude that it cannot be rational to believe these sorts of interpretations unless they are supplemented with some observer-independent structure which underwrites intersubjective agreement in at least certain sorts of cases.

Wald-Zoupas prescription with (soft) anomalies

We show that the Wald-Zoupas prescription for gravitational charges is valid in the presence of anomalies and field-dependent diffeomorphism, but only if these are related to one another in a specific way. The geometric interpretation of the allowed anomalies is exposed looking at the example of BMS symmetries: They correspond to soft terms in the charges. We determine if the Wald-Zoupas prescription coincides with an improved Noether charge. The necessary condition is a certain differential equation, and when it is satisfied, the boundary Lagrangian of the resulting improved Noether charge contains in general a non-trivial corner term that can be identified a priori from a condition of anomaly-freeness. Our results explain why the Wald-Zoupas prescription works in spite of the anomalous behaviour of BMS transformations, and should be helpful to relate different branches of the literature on surface charges.

Generic features of a polymer quantum black hole

Non-singular black holes models can be described by modified classical equations motivated by loop quantum gravity. We investigate what happens when the sine function typically used in the modification is replaced by an arbitrary bounded function, a generalization meant to study the effect of ambiguities such as the choice of representation of the holonomy. A number of features can be determined without committing to a specific choice of functions. We find generic singularity resolution. The presence and number of horizons is determined by global features of the function regularizing the angular components of the connection, and the presence and number of bounces by global features of the function regularizing the time component. The trapping or anti-trapping nature of regions inside horizons depends on the relative location with respect to eventual bounces. We use these results to comment on some of the ambiguities of polymer black hole models.

Quantum communication through devices in an indefinite input-output direction

A number of quantum devices are bidirectional, meaning that exchanging their inputs with their outputs yields valid quantum processes. Bidirectional devices, such as half-wave plates and quarter-wave plates in quantum optics, can be used in a forward mode and a backward mode, corresponding to two opposite choices of the input-output direction. They can also be used in a coherent superposition of the forward and backward modes, giving rise to new operations in which the input-output direction is subject to quantum indefiniteness. In this work we explore the potential of input-output indefiniteness for the transfer of classical and quantum information through noisy channels. We first formulate a model of quantum communication with indefinite input-output direction. Then, we show that the ability to coherently control the input-output direction yields advantages over standard communication protocols in which the input-output direction is fixed. These advantages range from a general reduction of noise in bidirectional processes, to heralded noiseless communication, and, in some special cases, to a complete noise removal. The noise reduction due to input-output indefiniteness can be experimentally demonstrated with current photonic technologies, providing a way to investigate the operational consequences of exotic scenarios characterised by coherent quantum superpositions of forward-time and backward-time evolutions.

Experimental nonclassicality in a causal network without assuming freedom of choice

In a Bell experiment, it is natural to seek a causal account of correlations wherein only a common cause acts on the outcomes. For this causal structure, Bell inequality violations can be explained only if causal dependencies are modelled as intrinsically quantum. There also exists a vast landscape of causal structures beyond Bell that can witness nonclassicality, in some cases without even requiring free external inputs. Here, we undertake a photonic experiment realizing one such example: the triangle causal network, consisting of three measurement stations pairwise connected by common causes and no external inputs. To demonstrate the nonclassicality of the data, we adapt and improve three known techniques: (i) a machine-learning-based heuristic test, (ii) a data-seeded inflation technique generating polynomial Bell-type inequalities and (iii) entropic inequalities. The demonstrated experimental and data analysis tools are broadly applicable paving the way for future networks of growing complexity.

Time, space and matter in the primordial universe

Time, space, and matter are categories of our reasoning, whose properties appear to be fundamental. However, these require a scrutiny as in the extreme regime of the primordial universe these present quantum properties. What does it mean for time to be quantum? What does it mean for space? Are space and time disappearing, or what is disappearing are simply the categories we have been using to understand them? Concepts such as the superposition of causal structures or the quantum granularity of space require our attention and should be clarified to understand the physics of the primordial universe. The novelty that this brings requires us to reflect on matter as well: How can matter be defined on a granular space? Is quantum gravity hinting us toward considering new types of matter? The answers to these questions, that touch the foundations of physics and the very concepts with which we organize our understanding of reality, require in the end of the journey to confront ourselves with empirical data. And for that, the universe itself provides us with the best of possible laboratories.