Qiss

Summing bulk quantum numbers with Monte Carlo in spin foam theories

We introduce a strategy to compute EPRL spin foam amplitudes with many internal faces numerically. We work with texttt{sl2cfoam-next}, the state-of-the-art framework to numerically evaluate spin foam transition amplitudes. We find that uniform sampling Monte Carlo is exceptionally effective in approximating the sum over internal quantum numbers of a spin foam amplitude, considerably reducing the computational resources necessary. We apply it to compute large volume divergences of the theory and find surprising numerical evidence that the EPRL vertex renormalization amplitude is instead finite.

Linear Ultrastrong Optomechanical Interaction

Light-matter interaction in the ultrastrong coupling regime can be used to generate exotic ground states with two-mode squeezing and may be of use for quantum enhanced sensing. Current demonstrations of ultrastrong coupling have been performed in fundamentally nonlinear systems. We report a cavity optomechanical system that operates in the linear coupling regime, reaching a maximum coupling of $g_x/Omega_x=0.55pm 0.02$. Such a system is inherently unstable, which may in the future enable strong mechanical squeezing.

Observers in superposition and the no-signaling principle

The Wigner’s friend experiment is a thought experiment in which a so-called superobserver (Wigner) observes another observer (the friend) who has performed a quantum measurement on a physical system. In this setup Wigner treats the friend the system and potentially other degrees of freedom involved in the friend’s measurement as one joint quantum system. In general, Wigner’s measurement changes the internal record of the friend’s measurement result such that after the measurement by the superobserver the result stored in the observer’s memory register is no longer the same as the result the friend obtained at her measurement, i.e. before she was measured by Wigner. Here, we show that any awareness by the friend of such a change, which can be modeled by an additional memory register storing the information about the change, conflicts with the no-signaling condition in extended Wigner-friend scenarios.

Paradox with Phase-Coupled Interferometers

A pair of interferometers can be coupled by allowing one path from each to overlap such that if the particles meet in this overlap region, they annihilate. It was shown by one of us over thirty years ago that such annihilation-coupled interferometers can exhibit apparently paradoxical behaviour. More recently, Bose et al. and Marletto and Vedral have considered a pair of interferometers that are phase-coupled (where the coupling is through gravitational interaction). In this case one path from each interferometer undergoes a phase-coupling interaction. We show that these phase-coupled interferometers exhibit the same apparent paradox as the annihilation-coupled interferometers, though in a curiously dual manner.

Relational superposition measurements with a material quantum ruler

In physics, it is crucial to identify operational measurement procedures to give physical meaning to abstract quantities. There has been significant effort to define time operationally using quantum systems, but the same has not been achieved for space. Developing an operational procedure to obtain information about the location of a quantum system is particularly important for a theory combining general relativity and quantum theory, which cannot rest on the classical notion of spacetime. Here, we take a first step towards this goal, and introduce a model to describe an extended material quantum system working as a position measurement device. Such a “quantum ruler” is composed of N harmonically interacting dipoles and serves as a (quantum) reference system for the position of another quantum system. We show that we can define a quantum measurement procedure corresponding to the “superposition of positions”, and that by performing this measurement we can distinguish when the quantum system is in a coherent or incoherent superposition in the position basis. The model is fully relational, because the only meaningful variables are the relative positions between the ruler and the system, and the measurement is expressed in terms of an interaction between the measurement device and the measured system.

Any consistent coupling between classical gravity and quantum matter is fundamentally irreversible

When gravity is sourced by a quantum system, there is tension between its role as the mediator of a fundamental interaction, which is expected to acquire nonclassical features, and its role in determining the properties of spacetime, which is inherently classical. Fundamentally, this tension should result in breaking one of the fundamental principles of quantum theory or general relativity, but it is usually hard to assess which one without resorting to a specific model. Here, we answer this question in a theory-independent way using General Probabilistic Theories (GPTs). We consider the interactions of the gravitational field with a single matter system, and derive a no-go theorem showing that when gravity is classical at least one of the following assumptions needs to be violated: (i) Matter degrees of freedom are described by fully non-classical degrees of freedom; (ii) Interactions between matter degrees of freedom and the gravitational field are reversible; (iii) Matter degrees of freedom back-react on the gravitational field. We argue that this implies that theories of classical gravity and quantum matter must be fundamentally irreversible, as is the case in the recent model of Oppenheim et al. Conversely if we require that the interaction between quantum matter and the gravitational field are reversible, then the gravitational field must be non-classical.

Dark Energy or Modified Gravity?

We consider some of the epistemic benefits of exploring “theory space” in the context of modifications of general relativity with intended applications in cosmology. We show how studying modifications of general relativity can help in assessing the robustness of empirical inferences, particularly in inaccessible regimes. We also discuss challenges to sharply distinguishing apparently distinct directions in theory space.

Do We Have Any Viable Solution to the Measurement Problem?

Wallace (2022) has recently argued that a number of popular approaches to the measurement problem can’t be fully extended to relativistic quantum mechanics and quantum field theory; Wallace thus contends that as things currently stand, only the unitary-only approaches to the measurement problem are viable. However, the unitary-only approaches face serious epistemic problems which may threaten their viability as solutions, and thus we consider that it remains an urgent outstanding problem to find a viable solution to the measurement problem which can be extended to relativistic quantum mechanics. In this article we seek to understand in general terms what such a thing might look like. We argue that in order to avoid serious epistemic problems, the solution must be a single-world realist approach, and we further argue that any single-world realist approach which is able to reproduce the predictions of relativistic quantum mechanics will most likely have the property that our observable reality does not supervene on dynamical, precisely-defined microscopic beables. Thus we suggest three possible routes for further exploration: observable reality could be approximate and emergent, as in relational quantum mechanics with the addition of cross-perspective links, or observable reality could supervene on beables which are not microscopically defined, as in the consistent histories approach, or observable reality could supervene on beables which are not dynamical, as in Kent’s solution to the Lorentzian classical reality problem. We conclude that once all of these issues are taken into account, the options for a viable solution to the measurement problem are significantly narrowed down.

Modelling quantum particles falling into a black hole: the deep interior limit

In this paper we construct a solvable toy model of the quantum dynamics of the interior of a spherical black hole with falling spherical scalar field excitations. We first argue about how some aspects of the quantum gravity dynamics of realistic black holes emitting Hawking radiation can be modelled using Kantowski-Sachs solutions with a massless scalar field when one focuses on the deep interior region $rll M$ (including the singularity). Further, we show that in the $rll M$ regime, and in suitable variables, the KS model becomes exactly solvable at both the classical and quantum levels. The quantum dynamics inspired by loop quantum gravity is revisited. We propose a natural polymer-quantization where the area $a$ of the orbits of the rotation group is quantized. The polymer (or loop) dynamics is closely related with the Schroedinger dynamics away from the singularity with a form of continuum limit naturally emerging from the polymer treatment. The Dirac observable associated to the mass is quantized and shown to have an infinite degeneracy associated to the so-called $epsilon$-sectors. Suitable continuum superpositions of these are well defined distributions in the fundamental Hilbert space and satisfy the continuum Schroedinger dynamics.

Do We Have Any Viable Solution to the Measurement Problem?

Wallace (2022) has recently argued that a number of popular approaches to the measurement problem can’t be fully extended to relativistic quantum mechanics and quantum field theory; Wallace thus contends that as things currently stand, only the unitary-only approaches to the measurement problem are viable. However, the unitary-only approaches face serious epistemic problems which may threaten their viability as solutions, and thus we consider that it remains an urgent outstanding problem to find a viable solution to the measurement problem which can be extended to relativistic quantum mechanics. In this article we seek to understand in general terms what such a thing might look like. We argue that in order to avoid serious epistemic problems, the solution must be a single-world realist approach, and we further argue that any single-world realist approach which is able to reproduce the predictions of relativistic quantum mechanics will most likely have the property that our observable reality does not supervene on dynamical, precisely-defined microscopic beables. Thus we suggest three possible routes for further exploration: observable reality could be approximate and emergent, as in relational quantum mechanics with the addition of cross-perspective links, or observable reality could supervene on beables which are not microscopically defined, as in the consistent histories approach, or observable reality could supervene on beables which are not dynamical, as in Kent’s solution to the Lorentzian classical reality problem. We conclude that once all of these issues are taken into account, the options for a viable solution to the measurement problem are significantly narrowed down.