Qiss

Memory and entropy

I study the physical nature of traces (or memories). Surprisingly, (i) systems separation with (ii) temperature differences and (iii) long thermalization times, are sufficient conditions to produce macroscopic traces. Traces of the past are ubiquitous because these conditions are largely satisfied in our universe. I quantify these thermodynamical conditions for memory and derive an expression for the maximum amount of information stored in such memories, as a function of the relevant thermodynamical parameters. This mechanism transforms low entropy into available information.

Photonic Quantum Metrology

Quantum Metrology is one of the most promising application of quantum technologies. The aim of this research field is the estimation of unknown parameters exploiting quantum resources, whose application can lead to enhanced performances with respect to classical strategies. Several physical quantum systems can be employed to develop quantum sensors, and photonic systems represent ideal probes for a large number of metrological tasks. Here we review the basic concepts behind quantum metrology and then focus on the application of photonic technology for this task, with particular attention to phase estimation. We describe the current state of the art in the field in terms of platforms and quantum resources. Furthermore, we present the research area of multiparameter quantum metrology, where multiple parameters have to be estimated at the same time. We conclude by discussing the current experimental and theoretical challenges, and the open questions towards implementation of photonic quantum sensors with quantum-enhanced performances in the presence of noise.

Cyclic Quantum Causal Models

Causal reasoning is essential to science, yet quantum theory challenges it. Quantum correlations violating Bell inequalities defy satisfactory causal explanations within the framework of classical causal models. What is more, a theory encompassing quantum systems and gravity is expected to allow causally nonseparable processes featuring operations in indefinite causal order, defying that events be causally ordered at all. The first challenge has been addressed through the recent development of intrinsically quantum causal models, allowing causal explanations of quantum processes — provided they admit a definite causal order, i.e. have an acyclic causal structure. This work addresses causally nonseparable processes and offers a causal perspective on them through extending quantum causal models to cyclic causal structures. Among other applications of the approach, it is shown that all unitarily extendible bipartite processes are causally separable and that for unitary processes, causal nonseparability and cyclicity of their causal structure are equivalent.

Quantum Bandits

We consider the quantum version of the bandit problem known as {em best arm identification} (BAI). We first propose a quantum modeling of the BAI problem, which assumes that both the learning agent and the environment are quantum; we then propose an algorithm based on quantum amplitude amplification to solve BAI. We formally analyze the behavior of the algorithm on all instances of the problem and we show, in particular, that it is able to get the optimal solution quadratically faster than what is known to hold in the classical case.

Quantum Temporal Superposition: the case of QFT

Quantum field theory is completely characterized by the field correlations between spacetime points. In turn, some of these can be accessed by locally coupling to the field simple quantum systems, a.k.a. particle detectors. In this work, we consider what happens when a quantum-controlled superposition of detectors at different space-time points is used to probe the correlations of the field. We show that, due to quantum interference effects, two detectors can gain information on field correlations which would not be otherwise accessible. This has relevant consequences for information theoretic quantities, like entanglement and mutual information harvested from the field. In particular, the quantum control allows for extraction of entanglement in scenarios where this is otherwise provably impossible.

Resolving the $H_0$ tension with diffusion

The tension between the value of the Hubble constant $H_0$ determined from local supernovae data and the one inferred from the cosmic microwave background based on the $Lambda$CDM cosmological model may indicate the need for new physics. Here, we show that this `Hubble tension’ can be resolved in models involving an effective energy flufrom the matter sector into dark energy resulting naturally from a combination of unimodular gravity and an energy diffusion process. The scheme is one where dark energy has the standard equation of state $w=-1$. This proposal provides an alternative phenomenological paradigm accounting for the observations, while offering a general framework to study diffusion effects coming from novel fundamental physical processes.

Sagnac InterfeQILab Rometer and the Quantum Nature of Gravity

We use a quantum variant of the Sagnac interfeQILab Rometer to argue for the quantum nature of gravity as well as to formulate a quantum version of the equivalence principle. We first present an original derivation of the phase acquired in the conventional Sagnac matter-wave interfeQILab Rometer, within the Hamiltonian formalism. Then we modify the interfeQILab Rometer in two crucial respects. The interfering matter wave is interfered along two different distances from the centre and the interfeQILab Rometer is prepared in a superposition of two different angular velocities. We argue that if the radial and angular degrees of freedom of the matter wave become entangled through this experiment, then, via the equivalence principle, the gravitational field must be non-classical.

Quantum Advantage for Shared Randomness Generation

Sharing correlated random variables is a resource for a number of information theoretic tasks such as privacy amplification, simultaneous message passing, secret sharing and many more. In this article, we show that to establish such a resource called shared randomness, quantum systems provide an advantage over their classical counterpart. Precisely, we show that appropriate albeit fixed measurements on a shared two-qubit state can generate correlations which cannot be obtained from any possible state on two classical bits. In a resource theoretic set-up, this feature of quantum systems can be interpreted as an advantage in winning a two players co-operative game, which we call the `non-monopolize social subsidy’ game. It turns out that the quantum states leading to the desired advantage must possess non-classicality in the form of quantum discord. On the other hand, while distributing such sources of shared randomness between two parties via noisy channels, quantum channels with zero capacity as well as with classical capacity strictly less than unity perform more efficiently than the perfect classical channel. Protocols presented here are noise-robust and hence should be realizable with state-of-the-art quantum devices.

Contextuality in entanglement-assisted one-shot classical communication

We consider the problem of entanglement-assisted one-shot classical communication. In the zero-error regime, entanglement can increase the one-shot zero-error capacity of a family of classical channels following the strategy of Cubitt et al., Phys. Rev. Lett. 104, 230503 (2010). This strategy uses the Kochen-Specker theorem which is applicable only to projective measurements. As such, in the regime of noisy states and/or measurements, this strategy cannot increase the capacity. To accommodate generically noisy situations, we examine the one-shot success probability of sending a fixed number of classical messages. We show that preparation contextuality powers the quantum advantage in this task, increasing the one-shot success probability beyond its classical maximum. Our treatment extends beyond Cubitt et al. and includes, for example, the experimentally implemented protocol of Prevedel et al., Phys. Rev. Lett. 106, 110505 (2011). We then show a mapping between this communication task and a corresponding nonlocal game. This mapping generalizes the connection with pseudotelepathy games previously noted in the zero-error case. Finally, after motivating a constraint we term context-independent guessing, we show that contextuality witnessed by noise-robust noncontextuality inequalities obtained in R. Kunjwal, Quantum 4, 219 (2020), is sufficient for enhancing the one-shot success probability. This provides an operational meaning to these inequalities and the associated hypergraph invariant, the weighted max-predictability, introduced in R. Kunjwal, Quantum 3, 184 (2019). Our results show that the task of entanglement-assisted one-shot classical communication provides a fertile ground to study the interplay of the Kochen-Specker theorem, Spekkens contextuality, and Bell nonlocality.

Unitarity and information in quantum gravity: a simple example

In approaches to quantum gravity, where smooth spacetime is an emergent approximation of a discrete Planckian fundamental structure, any effective smooth field theoretical description would miss part of the fundamental degrees of freedom and thus break unitarity. This is applicable also to trivial gravitational field (low energy) idealizations realized by the use of the Minkowski background geometry which, as any other spacetime geometry, corresponds, in the fundamental description, to infinitely many different and closely degenerate discrete microstates. The existence of such microstates provides a large reservoir for information to be coded at the end of black hole evaporation and thus opens the way to a natural resolution of the black hole evaporation information puzzle. In this paper we show that these expectations can be made precise in a simple quantum gravity model for cosmology motivated by loop quantum gravity. Concretely, even when the model is fundamentally unitary, when microscopic degrees of freedom irrelevant to low-energy cosmological observers are suitably ignored, pure states in the effective description evolve into mixed states due to decoherence with the Planckian microscopic structure. Moreover, in the relevant physical regime these hidden degrees freedom do not carry any `energy’ and thus realize in a fully quantum gravitational context the idea (emphasized before by Unruh and Wald) that decoherence can take place without dissipation, now in a concrete gravitational model strongly motivated by quantum gravity. All this strengthen the perspective of a quite conservative and natural resolution of the black hole evaporation puzzle where information is not destroyed but simply degraded (made unavailable to low energy observers) into correlations with the microscopic structure of the quantum geometry at the Planck scale.