Papers New

General gravitational charges on null hypersurfaces

We perform a detailed study of the covariance properties of the gravitational symplectic potential on a null hypersurface, and of the different polarizations that can be used to study conservative as well as leaky boundary conditions. We study the symmetry groups that arise with different %boundary conditions in the phase space prescriptions, and determine the fields that have anomalous transformations. This allows us to identify a one-parameter family of covariant symplectic potentials. Imposing stationarity as in the original Wald-Zoupas prescription, one recovers the unique symplectic potential of Chandrasekaran, Flanagan and Prabhu. The associated charges are all conserved on non-expanding horizons, but not on flat spacetime. We show that it is possible to demand a weaker notion of stationarity which selects another symplectic potential, again in a unique way, and whose charges are conserved on both non-expanding horizons and flat light-cones. Furthermore, the flux of future-pointing diffeomorphisms at leading-order around an outgoing flat light-cone is positive and reproduces the tidal heating term plus a memory-like term. Our results have applications for dynamical notions of entropy, and are useful to clarify the interplay between different boundary conditions, charge prescriptions, and symmetry groups that can be associated with a null boundary. We also study the conformal conservative boundary conditions suggested by the alternative polarization and identify under which conditions they define a non-ambiguous variational principle.

Obstructions to Compositionality

Compositionality is at the heart of computer science and several other areas of applied category theory such as computational linguistics, categorical quantum mechanics, interpretable AI, dynamical systems, compositional game theory, and Petri nets. However, the meaning of the term seems to vary across the many different applications. This work contributes to understanding, and in particular qualifying, different kinds of compositionality. Formally, we introduce invariants of categories that we call zeroth and first homotopy posets, generalising in a precise sense the $pi_0$ and $pi_1$ of a groupoid. These posets can be used to obtain a qualitative description of how far an object is from being terminal and a morphism is from being iso. In the context of applied category theory, this formal machinery gives us a way to qualitatively describe the “failures of compositionality”, seen as failures of certain (op)lax functors to be strong, by classifying obstructions to the (op)laxators being isomorphisms. Failure of compositionality, for example for the interpretation of a categorical syntax in a semantic universe, can both be a bad thing and a good thing, which we illustrate by respective examples in graph theory and quantum theory.

What Does ‘(Non)-Absoluteness of Observed Events’ Mean?

Recently there have emerged an assortment of theorems relating to the ‘absoluteness of emerged events,’ and these results have sometimes been used to argue that quantum mechanics may involve some kind of metaphysically radical non-absoluteness, such as relationalism or perspectivalism. However, in our view a close examination of these theorems fails to convincingly support such possibilities. In this paper we argue that the Wigner’s friend paradox, the theorem of Bong et al and the theorem of Lawrence et al are all best understood as demonstrating that if quantum mechanics is universal, and if certain auxiliary assumptions hold, then the world inevitably includes various forms of ‘disaccord,’ but this need not be interpreted in a metaphysically radical way; meanwhile, the theorem of Ormrod and Barrett is best understood either as an argument for an interpretation allowing multiple outcomes per observer, such as the Everett approach, or as a proof that quantum mechanics cannot be universal in the sense relevant for this theorem. We also argue that these theorems taken together suggest interesting possibilities for a different kind of relational approach in which dynamical states are relativized whilst observed events are absolute, and we show that although something like ‘retrocausality’ might be needed to make such an approach work, this would be a very special kind of retrocausality which would evade a number of common objections against retrocausality. We conclude that the non-absoluteness theorems may have a significant role to play in helping converge towards an acceptable solution to the measurement problem.

The debate over QKD: A rebuttal to the NSA’s objections

A recent publication by the NSA assessing the usability of quantum cryptography has generated significant attention, concluding that this technology is not recommended for use. Here, we reply to this criticism and argue that some of the points raised are unjustified, whereas others are problematic now but can be expected to be resolved in the foreseeable future.

Light-cone thermodynamics: purification of the Minkowski vacuum

We explicitly express the Minkowski vacuum of a massless scalar field in terms of the particle notion associated with suitable spherical conformal killing fields. These fields are orthogonal to the light wavefronts originating from a sphere with a radius of $r_H$ in flat spacetime: a bifurcate conformal killing horizon that exhibits semiclassical features similar to those of black hole horizons and Cauchy horizons of non-extremal spherically symmetric black holes. Our result highlights the quantum aspects of this analogy and extends the well-known decomposition of the Minkowski vacuum in terms of Rindler modes, which are associated with the boost Killing field normal to a pair of null planes in Minkowski spacetime (the basis of the Unruh effect). While some features of our result have been established by Kay and Wald’s theorems in the 90s — on quantum field theory in stationary spacetimes with bifurcate Killing horizons — the added value we provide here lies in the explicit expression of the vacuum.

Painlevé-Gullstrand coordinates discontinuity in the quantum Oppenheimer-Snyder model

A metric that describes a collapsing star and the surrounding black hole geometry accounting for quantum gravity effects has been derived independently by different research groups. There is consensus regarding this metric up until the star reaches its minimum radius, but there is disagreement about what happens past this event. The discrepancy stems from the appearance of a discontinuity in the Hamiltonian evolution of the metric components in Painlev’e-Gullstrand coordinates. Here we show that the continuous geometry that describes this phenomenon is represented by a discontinuous metric when written in these coordinates. The discontinuity disappears by changing coordinates. The discontinuity found in the Hamiltonian approach can therefore be interpreted as a coordinate effect. The geometry continues regularly into an expanding white hole phase, without the occurrence of a shock wave caused by a physical discontinuity.

Generation and characterization of polarization-entangled states using quantum dot single-photon sources

Single-photon sources based on semiconductor quantum dots find several applications in quantum information processing due to their high single-photon indistinguishability, on-demand generation, and low multiphoton emission. In this context, the generation of entangled photons represents a challenging task with a possible solution relying on the interference in probabilistic gates of identical photons emitted at different pulses from the same source. In this work, we implement this approach via a simple and compact design that generates entangled photon pairs in the polarization degree of freedom. We operate the proposed platform with single photons produced through two different pumping schemes, the resonant excited one and the longitudinal-acoustic phonon-assisted configuration. We then characterize the produced entangled two-photon states by developing a complete model taking into account relevant experimental parameters, such as the second-order correlation function and the Hong-Ou-Mandel visibility. Our source shows long-term stability and high quality of the generated entangled states, thus constituting a reliable building block for optical quantum technologies.

Nonclassicality in correlations without causal order

Causal inequalities are device-independent constraints on correlations realizable via local operations under the assumption of definite causal order between these operations. While causal inequalities in the bipartite scenario require nonclassical resources within the process-matrix framework for their violation, there exist tripartite causal inequalities that admit violations with classical resources. The tripartite case puts into question the status of a causal inequality violation as a witness of nonclassicality, i.e., there is no a priori reason to believe that quantum effects are in general necessary for a causal inequality violation. Here we propose a notion of classicality for correlations–termed deterministic consistency–that goes beyond causal inequalities. We refer to the failure of deterministic consistency for a correlation as its antinomicity, which serves as our notion of nonclassicality. Deterministic consistency is motivated by a careful consideration of the appropriate generalization of Bell inequalities–which serve as witnesses of nonclassicality for non-signalling correlations–to the case of correlations without any non-signalling constraints. This naturally leads us to the classical deterministic limit of the process matrix framework as the appropriate analogue of a local hidden variable model. We then define a hierarchy of sets of correlations–from the classical to the most nonclassical–and prove strict inclusions between them. We also propose a measure for the antinomicity of correlations–termed ‘robustness of antinomy’–and apply our framework in bipartite and tripartite scenarios. A key contribution of this work is an explicit nonclassicality witness that goes beyond causal inequalities, inspired by a modification of the Guess Your Neighbour’s Input (GYNI) game that we term the Guess Your Neighbour’s Input or NOT (GYNIN) game.

Graphical CSS Code Transformation Using ZX Calculus

In this work, we present a generic approach to transform CSS codes by building upon their equivalence to phase-free ZX diagrams. Using the ZX calculus, we demonstrate diagrammatic transformations between encoding maps associated with different codes. As a motivating example, we give explicit transformations between the Steane code and the quantum Reed-Muller code, since by switching between these two codes, one can obtain a fault-tolerant universal gate set. To this end, we propose a bidirectional rewrite rule to find a (not necessarily transversal) physical implementation for any logical ZX diagram in any CSS code. We then focus on two code transformation techniques: $textit{code morphing}$, a procedure that transforms a code while retaining its fault-tolerant gates, and $textit{gauge fixing}$, where complimentary codes can be obtained from a common subsystem code (e.g., the Steane and the quantum Reed-Muller codes from the [[15,1,3,3]] code). We provide explicit graphical derivations for these techniques and show how ZX and graphical encoder maps relate several equivalent perspectives on these code transforming operations.

Quantum Causal Inference with Extremely Light Touch

We consider the quantum version of inferring the causal relation between events. There has been recent progress towards identifying minimal interventions and observations needed. We here show, by means of constructing an explicit scheme, that quantum observations alone are sufficient for quantum causal inference for the case of a bipartite quantum system with measurements at two times. Our scheme involves the derivation of a closed-form expression for the space-time pseudo-density matrix associated with many times and qubits. This matrix can be determined by coarse-grained quantum observations alone. We show that from this matrix one can infer the causal structure via the sign of a particular function called a causal monotone. Our results show that for quantum processes one can infer the causal structure solely from correlations between observations at different times.