Papers New

Gravitationally-induced entanglement in cold atoms

A promising route to testing quantum gravity in the laboratory is to look for gravitationally-induced entanglement (GIE) between two or more quantum matter systems. Principally, proposals for such tests have used microsolid systems, with highly non-classical states, such as N00N states or highly-squeezed states. Here, we consider, for the first time, GIE between two cold atomic gasses as a test of quantum gravity. We propose placing two atom interferometers next to each other in parallel and looking for correlations in the number of atoms at the output ports as evidence of GIE and quantum gravity. There are no challenging macroscopic superposition states, such as N00N or Schr”odinger cat states, instead classical-like `coherent’ states of atoms. This requires the total mass of the atom interferometers to be on the Planck mass scale, and long integration times. With current state-of-the-art quantum squeezing in cold atoms, however, we argue that the mass scale can be reduced to approachable levels and outline how such a mass scale can be achieved in the near future.

Probes, purviews, purgatories, parable, paradox?

I discuss some general information-theoretic properties of quantum mechanical probes in semiclassical gravity: their purview, i.e. what they can see and act on (in terms of a generalised entanglement wedge), their spontaneous evaporation into a cloud of highly entropic particles when one tries to make them see too much (perhaps a parable on the dangers of straining one’s eyes), and the subsequent resolution of an apparent information paradox.

Completeness for arbitrary finite dimensions of ZXW-calculus, a unifying calculus

The ZX-calculus is a universal graphical language for qubit quantum computation, meaning that every linear map between qubits can be expressed in the ZX-calculus. Furthermore, it is a complete graphical rewrite system: any equation involving linear maps that is derivable in the Hilbert space formalism for quantum theory can also be derived in the calculus by rewriting. It has widespread usage within quantum industry and academia for a variety of tasks such as quantum circuit optimisation, error-correction, and education. The ZW-calculus is an alternative universal graphical language that is also complete for qubit quantum computing. In fact, its completeness was used to prove that the ZX-calculus is universally complete. This calculus has advanced how quantum circuits are compiled into photonic hardware architectures in the industry. Recently, by combining these two calculi, a new calculus has emerged for qubit quantum computation, the ZXW-calculus. Using this calculus, graphical-differentiation, -integration, and -exponentiation were made possible, thus enabling the development of novel techniques in the domains of quantum machine learning and quantum chemistry. Here, we generalise the ZXW-calculus to arbitrary finite dimensions, that is, to qudits. Moreover, we prove that this graphical rewrite system is complete for any finite dimension. This is the first completeness result for any universal graphical language beyond qubits.

Modelling quantum particles falling into a black hole: the deep interior limit

In this paper we construct a solvable toy model of the quantum dynamics of the interior of a spherical black hole with falling spherical scalar field excitations. We first argue about how some aspects of the quantum gravity dynamics of realistic black holes emitting Hawking radiation can be modelled using Kantowski-Sachs solutions with a massless scalar field when one focuses on the deep interior region $rll M$ (including the singularity). Further, we show that in the $rll M$ regime, and in suitable variables, the KS model becomes exactly solvable at both the classical and quantum levels. The quantum dynamics inspired by loop quantum gravity is revisited. We propose a natural polymer-quantization where the area $a$ of the orbits of the rotation group is quantized. The polymer (or loop) dynamics is closely related with the Schroedinger dynamics away from the singularity with a form of continuum limit naturally emerging from the polymer treatment. The Dirac observable associated to the mass is quantized and shown to have an infinite degeneracy associated to the so-called $epsilon$-sectors. Suitable continuum superpositions of these are well defined distributions in the fundamental Hilbert space and satisfy the continuum Schroedinger dynamics.

On the geometry of the black-to-white hole transition within a single asymptotic region

We write explicitly the complete Lorentzian metric of a singularity-free spacetime where a black hole transitions into a white hole located in its same asymptotic region. In particular, the metric interpolates between the black and white horizons. The metric satisfies the Einstein field equations up to the tunneling region. The matter giving rise to the black hole is described by the Oppenheimer-Snyder model, corrected with loop-quantum-cosmology techniques in the quantum region. The interior quantum geometry is fixed by a local Killing symmetry, broken at the horizon transition. At large scale, the geometry is determined by two parameters: the mass of the hole and the duration of the transition process. The latter is a global geometrical parameter. We give the full metric outside the star in a single coordinate patch.

Do We Have Any Viable Solution to the Measurement Problem?

Wallace (2022) has recently argued that a number of popular approaches to the measurement problem can’t be fully extended to relativistic quantum mechanics and quantum field theory; Wallace thus contends that as things currently stand, only the unitary-only approaches to the measurement problem are viable. However, the unitary-only approaches face serious epistemic problems which may threaten their viability as solutions, and thus we consider that it remains an urgent outstanding problem to find a viable solution to the measurement problem which can be extended to relativistic quantum mechanics. In this article we seek to understand in general terms what such a thing might look like. We argue that in order to avoid serious epistemic problems, the solution must be a single-world realist approach, and we further argue that any single-world realist approach which is able to reproduce the predictions of relativistic quantum mechanics will most likely have the property that our observable reality does not supervene on dynamical, precisely-defined microscopic beables. Thus we suggest three possible routes for further exploration: observable reality could be approximate and emergent, as in relational quantum mechanics with the addition of cross-perspective links, or observable reality could supervene on beables which are not microscopically defined, as in the consistent histories approach, or observable reality could supervene on beables which are not dynamical, as in Kent’s solution to the Lorentzian classical reality problem. We conclude that once all of these issues are taken into account, the options for a viable solution to the measurement problem are significantly narrowed down.

Any consistent coupling between classical gravity and quantum matter is fundamentally irreversible

When gravity is sourced by a quantum system, there is tension between its role as the mediator of a fundamental interaction, which is expected to acquire nonclassical features, and its role in determining the properties of spacetime, which is inherently classical. Fundamentally, this tension should result in breaking one of the fundamental principles of quantum theory or general relativity, but it is usually hard to assess which one without resorting to a specific model. Here, we answer this question in a theory-independent way using General Probabilistic Theories (GPTs). We consider the interactions of the gravitational field with a single matter system, and derive a no-go theorem showing that when gravity is classical at least one of the following assumptions needs to be violated: (i) Matter degrees of freedom are described by fully non-classical degrees of freedom; (ii) Interactions between matter degrees of freedom and the gravitational field are reversible; (iii) Matter degrees of freedom back-react on the gravitational field. We argue that this implies that theories of classical gravity and quantum matter must be fundamentally irreversible, as is the case in the recent model of Oppenheim et al. Conversely if we require that the interaction between quantum matter and the gravitational field are reversible, then the gravitational field must be non-classical.

Summing bulk quantum numbers with Monte Carlo in spin foam theories

We introduce a strategy to compute EPRL spin foam amplitudes with many internal faces numerically. We work with texttt{sl2cfoam-next}, the state-of-the-art framework to numerically evaluate spin foam transition amplitudes. We find that uniform sampling Monte Carlo is exceptionally effective in approximating the sum over internal quantum numbers of a spin foam amplitude, considerably reducing the computational resources necessary. We apply it to compute large volume divergences of the theory and find surprising numerical evidence that the EPRL vertex renormalization amplitude is instead finite.

Loop Quantum Gravity and Quantum Information

We summarize recent developments at the interface of quantum gravity and quantum information, and discuss applications to the quantum geometry of space in loop quantum gravity. In particular, we describe the notions of link entanglement, intertwiner entanglement, and boundary spin entanglement in a spin-network state. We discuss how these notions encode the gluing of quanta of space and their relevance for the reconstruction of a quantum geometry from a network of entanglement structures. We then focus on the geometric entanglement entropy of spin-network states at fixed spins, treated as a many-body system of quantum polyhedra, and discuss the hierarchy of volume-law, area-law and zero-law states. Using information theoretic bounds on the uncertainty of geometric observables and on their correlations, we identify area-law states as the corner of the Hilbert space that encodes a semiclassical geometry, and the geometric entanglement entropy as a probe of semiclassicality.

Quantum Reference Frames at the Boundary of Spacetime

An analysis is given of the local phase space of gravity coupled to matter to second order in perturbation theory. Working in local regions with boundaries at finite distance, we identify matter, Coulomb, and additional boundary modes. The boundary modes take the role of reference frames for both diffeomorphisms and internal Lorentz rotations. Passing to the quantum level, we identify the constraints that link the bulk and boundary modes. The constraints take the form of a multi-fingered Schr”odinger equation, which determines the relational evolution of the quantum states in the bulk with respect to the quantum reference fields at the boundary.