Papers New

Geometry from local flatness in Lorentzian spin foam theories

Local flatness is a property shared by all the spin foam models. It ensures that the theory’s fundamental building blocks are flat by requiring locally trivial parallel transport. In the context of simplicial Lorentzian spin foam theory, we show that local flatness is the main responsible for the emergence of geometry independently of the details of the spin foam model. We discuss the asymptotic analysis of the EPRL spin foam amplitudes in the large quantum number regime, highlighting the interplay with local flatness.

Cosmological constraints on unimodular gravity models with diffusion

A discrete space-time structure lying at about the Planck scale may become manifest in the form of very small violations of the conservation of the matter energy-momentum tensor. In order to include such kind of violations, forbidden within the General Relativity framework, the theory of unimodular gravity seems as the simplest option to describe the gravitational interaction. In the cosmological context, a direct consequence of such violation of energy conservation might be heuristically viewed a “diffusion process of matter (both dark and ordinary)” into an effective dark energy term in Einstein’s equations, which leads under natural assumptions to an adequate estimate for the value of the cosmological constant. Previous works have also indicated that these kind of models might offer a natural scenario to alleviate the Hubble tension. In this work, we consider a simple model for thecosmological history including a late time occurrence of such energy violation and study the modifications of the predictions for the anisotropy and polarization of the Cosmic Microwave Background (CMB). We compare the model’s predictions with recent data from the CMB, Supernovae Type Ia, cosmic chronometers and Baryon Acoustic Oscillations. The results show the potential of this type of model to alleviate the Hubble tension.

Quantum States of Fields for Quantum Split Sources

Field mediated entanglement experiments probe the quantum superposition of macroscopically distinct field configurations. We show that this phenomenon can be described by using a transparent quantum field theoretical formulation of electromagnetism and gravity in the field basis. The strength of such a description is that it explicitly displays the superposition of macroscopically distinct states of the field. In the case of (linearised) quantum general relativity, this formulation exhibits the quantum superposition of geometries giving rise to the effect.

Philosophical Foundations of Loop Quantum Gravity

Understanding the quantum aspects of gravity is not only a matter of equations and experiments. Gravity is intimately connected with the structure of space and time, and understanding quantum gravity requires us to find a conceptual structure appropriate to make sense of the quantum aspects of space and time. In the course of the last decades, an extensive discussion on this problem has led to a clear conceptual picture, that provides a coherent conceptual foundation of today’s Loop Quantum Gravity. We review this foundation, addressing issues such as the sense in which space and time are emergent, the notion of locality, the role of truncation that enables physical computations on finite graphs, the problem of time, and the characterization of the observable quantities in quantum gravity.

Quantum diffeomorphisms cannot make indefinite causal order definite

The study of indefinite causal order has seen rapid development, both theoretically and experimentally, in recent years. While classically the causal order of two timelike separated events A and B is fixed – either A before B or B before A – this is no longer true in quantum theory. There, it is possible to encounter superpositions of causal orders. In light of recent work on quantum reference frames, which reveals that the superposition of locations, momenta, and other properties can depend on the choice of reference frame or coordinate system, the question arises whether this also holds true for superpositions of causal orders. Here, we provide a negative answer to this question for quantum diffeomorphisms. First, we provide an unambiguous definition of causal order between two events in terms of worldline coincidences and the proper time of a third particle. Then, we show that superpositions of causal order defined as such cannot be rendered definite even through the most general class of coordinate transformations – quantum-controlled, independent diffeomorphisms in each branch. Finally, based on our results, we connect the information theoretic and gravitational perspectives on indefinite causal order.

Inference of gravitational field superposition from quantum measurements

Experiments are beginning to probe the interaction of quantum particles with gravitational fields beyond the uniform-field regime. In non-relativistic quantum mechanics, the gravitational field in such experiments can be written as a superposition state. We empirically demonstrate that alternative theories of gravity can avoid gravitational superposition states only by decoupling the gravitational field energy from the quantum particle’s time evolution. Furthermore, such theories must specify a preferred quantum reference frame in which the equations of motion are valid. To the extent that these properties are theoretically implausible, recent experiments provide indirect evidence that gravity has quantum features. Proposed experiments with superposed gravitational sources would provide even stronger evidence that gravity is nonclassical.

Witnessing superpositions of causal orders by weak measurements at a given time

The questions we raise in this letter are as follows: What is the most general representation of a quantum state at a single time? Can we adapt the current representations to the scenarios in which the order of quantum operations are coherently or incoherently superposed? If so, what is the relation between the state at a given time and the uncertainty in the order of events before and after it? By establishing the relationship of two-state vector formalism with pseudo-density operators, we introduce the notion of single-time pseudo-state which can be constructed by either ideal or weak measurements. We show that the eigenspectrum in the latter case enables us to discriminate between the coherent and incoherent superpositions of causal orders in which the pre- and post-selection measurements are interchanged with a non-zero probability. Finally, we discuss some of the possible experimental realizations in existing photonic setups.

Experimental demonstration of input-output indefiniteness in a single quantum device

At the fundamental level, the dynamics of quantum fields is invariant under the combination of time reversal, charge conjugation, and parity inversion. This symmetry implies that a broad class of effective quantum evolutions are bidirectional, meaning that the exchange of their inputs and outputs gives rise to valid quantum evolutions. Recently, it has been observed that quantum theory is theoretically compatible with a family of operations in which the roles of the inputs and outputs is indefinite. However, such operations have not been demonstrated in the laboratory so far. Here we experimentally demonstrate input-output indefiniteness in a photonic setup, demonstrating an advantage in a quantum game and showing incompatibility with a definite input-output direction by more than 69 standard deviations. Our results establish input-output indefiniteness as a new resource for quantum information protocols, and enable the table-top simulation of hypothetical scenarios where the arrow of time could be in a quantum superposition.

Quantum Euler angles and agency-dependent spacetime

Quantum gravity is expected to introduce quantum aspects into the description of reference frames. Here we set the stage for exploring how quantum gravity induced deformations of classical symmetries could modify the transformation laws among reference frames in an effective regime. We invoke the quantum group $SU_q(2)$ as a description of deformed spatial rotations and interpret states of a representation of its algebra as describing the relative orientation between two reference frames. This leads to a quantization of one of the Euler angles and to the new paradigm of agency-dependence: space is reconstructed as a collection of fuzzy points, exclusive to each agent, which depends on their choice of reference frame. Each agent can choose only one direction in which points can be sharp, while points in all other directions become fuzzy in a way that depends on this choice. Two agents making different choices will thus observe the same points with different degrees of fuzziness.

Wald-Zoupas prescription with (soft) anomalies

We show that the Wald-Zoupas prescription for gravitational charges is valid in the presence of anomalies and field-dependent diffeomorphism, but only if these are related to one another in a specific way. The geometric interpretation of the allowed anomalies is exposed looking at the example of BMS symmetries: They correspond to soft terms in the charges. We determine if the Wald-Zoupas prescription coincides with an improved Noether charge. The necessary condition is a certain differential equation, and when it is satisfied, the boundary Lagrangian of the resulting improved Noether charge contains in general a non-trivial corner term that can be identified a priori from a condition of anomaly-freeness. Our results explain why the Wald-Zoupas prescription works in spite of the anomalous behaviour of BMS transformations, and should be helpful to relate different branches of the literature on surface charges.