April 2025

Nonsingular collapse of a spherical dust cloud

We provide a covariant framework to study singularity-free Lema^itre-Tolman-Bondi spacetimes with effective corrections motivated by loop quantum gravity. We show that, as in general relativity, physically reasonable energy distributions lead to a contraction of the dust shells. However, quantum-gravity effects eventually stop the collapse, the dust smoothly bounces back, and no gravitational singularity is generated. This model is constructed by deforming the Hamiltonian constraint of general relativity with the condition that the hypersurface deformation algebra is closed. In addition, under the gauge transformations generated by the deformed constraints, the structure function of the algebra changes adequately, so that it can be interpreted as the inverse spatial metric. Therefore, the model is completely covariant in the sense that gauge transformations in phase space simply correspond to coordinate changes in spacetime. However, in the construction of the metric, we point out a specific freedom of considering a conformal factor, which we use to obtain a family of singularity-free spacetimes associated to the modified model.

Spacetime geometry from canonical spherical gravity

We study covariant models for vacuum spherical gravity within a canonical setting. Starting from a general ansatz, we derive the most general family of Hamiltonian constraints that are quadratic in first-order and linear in second-order spatial derivatives of the triad variables, and obey certain specific covariance conditions. These conditions ensure that the dynamics generated by such family univocally defines a spacetime geometry, independently of gauge or coordinates choices. This analysis generalizes the Hamiltonian constraint of general relativity, though keeping intact the covariance of the theory, and leads to a rich variety of new geometries. We find that the resulting geometries depend on seven free functions of one scalar variable, and we study their generic features. By construction, there are no propagating degrees of freedom in the theory. However, we also show that it is possible to add matter to the system by simply following the usual minimal-coupling prescription, which leads to novel models to describe dynamical scenarios.

Understanding the interplay of entanglement and nonlocality: motivating and developing a new branch of entanglement theory

A standard approach to quantifying resources is to determine which operations on the resources are freely available, and to deduce the partial order over resources that is induced by the relation of convertibility under the free operations. If the resource of interest is the nonclassicality of the correlations embodied in a quantum state, i.e., entanglement, then the common assumption is that the appropriate choice of free operations is Local Operations and Classical Communication (LOCC). We here advocate for the study of a different choice of free operations, namely, Local Operations and Shared Randomness (LOSR), and demonstrate its utility in understanding the interplay between the entanglement of states and the nonlocality of the correlations in Bell experiments. Specifically, we show that the LOSR paradigm (i) provides a resolution of the anomalies of nonlocality, wherein partially entangled states exhibit more nonlocality than maximally entangled states, (ii) entails new notions of genuine multipartite entanglement and nonlocality that are free of the pathological features of the conventional notions, and (iii) makes possible a resource-theoretic account of the self-testing of entangled states which generalizes and simplifies prior results. Along the way, we derive some fundamental results concerning the necessary and sufficient conditions for convertibility between pure entangled states under LOSR and highlight some of their consequences, such as the impossibility of catalysis for bipartite pure states. The resource-theoretic perspective also clarifies why it is neither surprising nor problematic that there are mixed entangled states which do not violate any Bell inequality. Our results motivate the study of LOSR-entanglement as a new branch of entanglement theory.

On the tensorial structure of general covariant quantum systems

The definition of a quantum system requires a Hilbert space, a way to define the dynamics, and an algebra of observables. The structure of the observable algebra is related to a tensor product decomposition of the Hilbert space and represents the composition of the system by subsystems. It has been remarked that the Hamiltonian may determine this tensor product structure. Here we observe that this fact may lead to questionable consequences in some cases, and does extend to the more general background-independent case, where the Hamiltonian is replaced by a Hamiltonian constraint. These observations reinforces the idea that specifying the observables and the way they interplay with the dynamics, is essential to define a quantum theory. We also reflect on the general role that system decomposition has in the quantum theory.

Locality in the Schroedinger Picture of Quantum Mechanics

We explain how the so-called Einstein locality is to be understood in the Schrodinger picture of quantum mechanics. This notion is perfectly compatible with the Bell non-locality exhibited by entangled states. Contrary to some beliefs that quantum mechanics is incomplete, it is, in fact, its overcompleteness as exemplified by different pictures of quantum physics, that points to the same underlying reality.

Primordial fluctuations from quantum gravity: 16-cell topological model

We present a numerical analysis of an Hartle-Hawking state for the early universe, in the deep quantum regime, computed using the covariant Loop Quantum Gravity formalism, in a truncation defined by 16-cell and in a simplified case where the dynamics is defined by SU(2) BF theory. We compute mean geometry, fluctuations and correlations. The results are consistent with the hypothesis that refining the triangulation does not affect the global physical picture substantially.

A Pipeline For Discourse Circuits From CCG

There is a significant disconnect between linguistic theory and modern NLP practice, which relies heavily on inscrutable black-box architectures. DisCoCirc is a newly proposed model for meaning that aims to bridge this divide, by providing neuro-symbolic models that incorporate linguistic structure. DisCoCirc represents natural language text as a `circuit’ that captures the core semantic information of the text. These circuits can then be interpreted as modular machine learning models. Additionally, DisCoCirc fulfils another major aim of providing an NLP model that can be implemented on near-term quantum computers. In this paper we describe a software pipeline that converts English text to its DisCoCirc representation. The pipeline achieves coverage over a large fragment of the English language. It relies on Combinatory Categorial Grammar (CCG) parses of the input text as well as coreference resolution information. This semantic and syntactic information is used in several steps to convert the text into a simply-typed $lambda$-calculus term, and then into a circuit diagram. This pipeline will enable the application of the DisCoCirc framework to NLP tasks, using both classical and quantum approaches.

Proceedings 19th International Conference on Quantum Physics and Logic

This volume contains the proceedings of the 19th International Conference on Quantum Physics and Logic (QPL 2022), which was held June 27-July 1, 2022 at Wolfson College, University of Oxford, UK. QPL is an annual conference that brings together academic and industry researchers working on mathematical foundations of quantum computation, quantum physics, and related areas. The main focus is on the use of algebraic and categorical structures, formal languages, semantic methods, as well as other mathematical and computer scientific techniques applicable to the study of physical systems, physical processes, and their composition.

Random pure Gaussian states and Hawking radiation

A black hole evaporates by Hawking radiation. Each mode of that radiation is thermal. If the total state is nevertheless to be pure, modes must be entangled. Estimating the minimum size of this entanglement has been an important outstanding issue. We develop a new theory of constrained random symplectic transformations, based on that the total state is pure, Gaussian and random, and every mode thermal as in Hawking theory. From this theory we compute the distribution of mode-mode correlations, from which we bound mode-mode entanglement. We find that correlations between thinly populated modes (early-time high-frequency modes and/or late modes of any frequency) are strongly suppressed. Such modes are hence very weakly entangled. Highly populated modes (early-time low-frequency modes) can on the other hand be strongly correlated, but a detailed analysis reveals that they are nevertheless also weakly entangled. Our analysis hence establishes that restoring unitarity after a complete evaporation of a black hole does not require strong quantum entanglement between any pair of Hawking modes. Our analysis further gives exact general expressions for the distribution of mode-mode correlations in random, pure, Gaussian states with given marginals, which may have applications beyond black hole physics.

Identification of Causal Influences in Quantum Processes

Though the topic of causal inference is typically considered in the context of classical statistical models, recent years have seen great interest in extending causal inference techniques to quantum and generalized theories. Causal identification is a type of causal inference problem concerned with recovering from observational data and qualitative assumptions the causal mechanisms generating the data, and hence the effects of hypothetical interventions. A major obstacle to a theory of causal identification in the quantum setting is the question of what should play the role of “observational data,” as any means of extracting data at a certain locus will almost certainly disturb the system. Hence, one might think a priori that quantum measurements are already too much like interventions, so that the problem of causal identification trivializes. This is not the case. Fixing a limited class of quantum instruments (namely the class of all projective measurements) to play the role of “observations,” we note that as in the classical setting, there exist scenarios for which causal identification is not possible. We then present sufficient conditions for quantum causal identification, starting with a quantum analogue of the well-known “front-door criterion” and finishing with a broader class of scenarios for which the effect of a single intervention is identifiable. These results emerge from generalizing the process-theoretic account of classical causal inference due to Jacobs, Kissinger, and Zanasi beyond the setting of Markov categories, and thereby treating the classical and quantum problems uniformly.