April 2025

Entanglement-asymmetry correspondence for internal quantum reference frames

In the quantization of gauge theories and quantum gravity, it is crucial to treat reference frames such as rods or clocks not as idealized external classical relata, but as internal quantum subsystems. In the Page-Wootters formalism, for example, evolution of a quantum system S is described by a stationary joint state of S and a quantum clock, where time-dependence of S arises from conditioning on the value of the clock. Here, we consider (possibly imperfect) internal quantum reference frames R for arbitrary compact symmetry groups, and show that there is an exact quantitative correspondence between the amount of entanglement in the invariant state on RS and the amount of asymmetry in the corresponding conditional state on S. Surprisingly, this duality holds exactly regardless of the choice of coherent state system used to condition on the reference frame. Averaging asymmetry over all conditional states, we obtain a simple representation-theoretic expression that admits the study of the quality of imperfect quantum reference frames, quantum speed limits for imperfect clocks, and typicality of asymmetry in a unified way. Our results shed light on the role of entanglement for establishing asymmetry in a fully symmetric quantum world.

Determinism Beyond Time Evolution

Physicists are increasingly beginning to take seriously the possibility of laws outside the traditional time-evolution paradigm; yet our understanding of determinism is still predicated on a forwards time-evolution picture, making it manifestly unsuited to the diverse range of research programmes in modern physics. In this article, we use a constraint-based framework to set out a generalization of determinism which does not presuppose temporal directedness, distinguishing between strong, weak and delocalised holistic determinism. We discuss some interesting consequences of these generalized notions of determinism, and we show that this approach sheds new light on the long-standing debate surrounding the nature of objective chance.

Contextuality in entanglement-assisted one-shot classical communication

We consider the problem of entanglement-assisted one-shot classical communication. In the zero-error regime, entanglement can increase the one-shot zero-error capacity of a family of classical channels following the strategy of Cubitt et al., Phys. Rev. Lett. 104, 230503 (2010). This strategy uses the Kochen-Specker theorem which is applicable only to projective measurements. As such, in the regime of noisy states and/or measurements, this strategy cannot increase the capacity. To accommodate generically noisy situations, we examine the one-shot success probability of sending a fixed number of classical messages. We show that preparation contextuality powers the quantum advantage in this task, increasing the one-shot success probability beyond its classical maximum. Our treatment extends beyond Cubitt et al. and includes, for example, the experimentally implemented protocol of Prevedel et al., Phys. Rev. Lett. 106, 110505 (2011). We then show a mapping between this communication task and a corresponding nonlocal game. This mapping generalizes the connection with pseudotelepathy games previously noted in the zero-error case. Finally, after motivating a constraint we term context-independent guessing, we show that contextuality witnessed by noise-robust noncontextuality inequalities obtained in R. Kunjwal, Quantum 4, 219 (2020), is sufficient for enhancing the one-shot success probability. This provides an operational meaning to these inequalities and the associated hypergraph invariant, the weighted max-predictability, introduced in R. Kunjwal, Quantum 3, 184 (2019). Our results show that the task of entanglement-assisted one-shot classical communication provides a fertile ground to study the interplay of the Kochen-Specker theorem, Spekkens contextuality, and Bell nonlocality.