Conservation Laws Reveal the Quantumness of Gravity
A universal framework for quantum-classical dynamics based on information-theoretic approaches is presented. Based on this, we analyze the interaction between quantum matter and a classical gravitational field. We point out that, under the assumption of conservation of momentum or energy, the classical gravitational field cannot cause the change of the momentum or energy of the quantum system, which is not consistent with the observation of existing experiments (e.g. the free fall experiment), while on the contrary the quantum gravitational field can do so. Our analysis exposes the fundamental relationship between conservation laws and the quantum properties of objects, offering new perspectives for the study of quantum gravity.