April 2025

The Temporal Asymmetry of Influence is Not Statistical

We argue that the temporal asymmetry of influence is not merely the result of thermodynamics: it is a consequence of the fact that modal structure of the universe must admit only processes which cannot give rise to contradictions. We appeal to the process matrix formalism developed in the field of quantum foundations to characterise processes which are compatible with local free will whilst ruling out contradictions, and argue that this gives rise to ‘consistent chaining’ requirements that explain the temporal asymmetry of influence. We compare this view to the perspectival account of causation advocated by Price and Ramsey.

Entanglement, causality and quantum networks

Quantum nonlocality, generated by strong correlations between entangled systems, defies the classical view of nature based on standard causal reasoning plus physical assumptions. The new frontier of the research on entanglement is to explore quantum correlations in complex networks, involving several parties and generating new striking quantum effects. We present recent advances on the realization of photonic quantum networks.

Wigner’s friend and relational objectivity

The `Wigner’s friend’ thought experiment illustrates the puzzling nature of quantum measurement. Časlav Brukner discusses how recent results suggest that in quantum theory the objectivity of measurement outcomes is relative to observation and observer.

Black Hole Information From Non-vacuum Localised Quantum States

We revisit Hawking’s black hole radiation derivation, including the quantum state of the initial matter forming the black hole. We investigate how non-vacuum initial quantum states, at the past of a black hole geometry, influence the black hole radiation observed at future null infinity $( mathcal{I}^+)$. We further classify which of the initial state excitations are distinguishable from one another through measurements on the black hole radiation state. We use Algebraic Quantum Field Theory (AQFT) to provide a clear physical interpretation of the results, in terms of localised operations. We then take a concrete example of a black hole made of one large collapsing excitation of mass $M$ and compare it to a same-mass black hole formed due to the collapse of two smaller excitations, of mass $M/2$ each. We find using our formalism that the two cases yield different radiation states and can in principle be distinguished. Our results provide a mechanism for partial information recovery in evaporating black holes, classify what information is recoverable through stimulated emission, and a concrete understanding of the classification based on the AQFT localisation.

The future of secure communications: device independence in quantum key distribution

In the ever-evolving landscape of quantum cryptography, Device-independent Quantum Key Distribution (DI-QKD) stands out for its unique approach to ensuring security based not on the trustworthiness of the devices but on nonlocal correlations. Beginning with a contextual understanding of modern cryptographic security and the limitations of standard quantum key distribution methods, this review explores the pivotal role of nonclassicality and the challenges posed by various experimental loopholes for DI-QKD. Various protocols, security against individual, collective and coherent attacks, and the concept of self-testing are also examined, as well as the entropy accumulation theorem, and additional mathematical methods in formulating advanced security proofs. In addition, the burgeoning field of semi-device-independent models (measurement DI–QKD, Receiver DI–QKD, and One–sided DI–QKD) is also analyzed. The practical aspects are discussed through a detailed overview of experimental progress and the open challenges toward the commercial deployment in the future of secure communications.

Quantum networks with coherent routing of information through multiple nodes

Large-scale communication networks, such as the internet, rely on routing packets of data through multiple intermediate nodes to transmit information from a sender to a receiver. In this paper, we develop a model of a quantum communication network that routes information simultaneously along multiple paths passing through intermediate stations. We demonstrate that a quantum routing approach can in principle extend the distance over which information can be transmitted reliably. Surprisingly, the benefit of quantum routing also applies to the transmission of classical information: even if the transmitted data is purely classical, delocalising it on multiple routes can enhance the achievable transmission distance. Our findings highlight the potential of a future quantum internet not only for achieving secure quantum communication and distributed quantum computing but also for extending the range of classical data transmission.

Quantum Gravity Signature in a Thermodynamic Observable

Proposed experiments for obtaining empirical evidence for a quantum description of gravity in a table-top setting focus on detecting quantum information signatures, such as entanglement or non-Gaussianity production, in gravitationally interacting quantum systems. Here, we explore an alternative approach where the quantization of gravity could be inferred through measurements of macroscopic, thermodynamical quantities, without the need for addressability of individual quantum systems. To demonstrate the idea, we take as a case study a gravitationally self-interacting Bose gas, and consider its heat capacity. We find a clear-cut distinction between the predictions of a classical gravitational interaction and a quantum gravitational interaction in the heat capacity of the Bose gas.

Entanglement harvesting in quantum superposed spacetime

We investigate the phenomenon of entanglement harvesting for a spacetime in quantum superposition, using two Unruh-DeWitt detectors interacting with a quantum scalar field where the spacetime background is modeled as a superposition of two quotient Minkowski spaces which are not related by diffeomorphisms. Our results demonstrate that the superposed nature of spacetime induces interference effects that can significantly enhance entanglement for both twisted and untwisted field. We compute the concurrence, which quantifies the harvested entanglement, as function of the energy gap of detectors and their separation. We find that it reaches its maximum when we condition the final spacetime superposition state to match the initial spacetime state. Notably, for the twisted field, the parameter region without entanglement exhibits a significant deviation from that observed in classical Minkowski space or a single quotient Minkowski space.

Differentiating and Integrating ZX Diagrams with Applications to Quantum Machine Learning

ZX-calculus has proved to be a useful tool for quantum technology with a wide range of successful applications. Most of these applications are of an algebraic nature. However, other tasks that involve differentiation and integration remain unreachable with current ZX techniques. Here we elevate ZX to an analytical perspective by realising differentiation and integration entirely within the framework of ZX-calculus. We explicitly illustrate the new analytic framework of ZX-calculus by applying it in context of quantum machine learning for the analysis of barren plateaus.