Qiss

Geometry Transition in Spinfoams

We show how the fixed-spin asymptotics of the EPRL model can be used to perform the spin-sum for spin foam amplitudes defined on fixed two-complexes without interior faces and contracted with coherent spin-network states peaked on a discrete simplicial geometry with macroscopic areas. We work in the representation given in Ref. 1. We first rederive the latter in a different way suitable for our purposes. We then extend this representation to 2-complexes with a boundary and derive its relation to the coherent state representation. We give the measure providing the resolution of the identity for Thiemann’s state in the twisted geometry parametrization. The above then permit us to put everything together with other results in the literature and show how the spin sum can be performed analytically for the regime of interest here. These results are relevant to analytic investigations regarding the transition of a black hole to a white hole geometry. In particular, this work gives detailed technique that was the basis of estimate for the black to white bounce appeared in Ref. 2. These results may also be relevant for applications of spinfoams to investigate the possibility of a ‘big bounce’.

Quantum Reference Frames at the Boundary of Spacetime

An analysis is given of the local phase space of gravity coupled to matter to second order in perturbation theory. Working in local regions with boundaries at finite distance, we identify matter, Coulomb, and additional boundary modes. The boundary modes take the role of reference frames for both diffeomorphisms and internal Lorentz rotations. Passing to the quantum level, we identify the constraints that link the bulk and boundary modes. The constraints take the form of a multi-fingered Schr”odinger equation

Loop Quantum Gravity and Quantum Information

We summarize recent developments at the interface of quantum gravity and quantum information, and discuss applications to the quantum geometry of space in loop quantum gravity. In particular, we describe the notions of link entanglement, intertwiner entanglement, and boundary spin entanglement in a spin-network state. We discuss how these notions encode the gluing of quanta of space and their relevance for the reconstruction of a quantum geometry from a network of entanglement structures. We then focus on the geometric entanglement entropy of spin-network states at fixed spins, treated as a many-body system of quantum polyhedra, and discuss the hierarchy of volume-law, area-law and zero-law states. Using information theoretic bounds on the uncertainty of geometric observables and on their correlations, we identify area-law states as the corner of the Hilbert space that encodes a semiclassical geometry, and the geometric entanglement entropy as a probe of semiclassicality.

The Temporal Asymmetry of Influence is Not Statistical

We argue that the temporal asymmetry of influence is not merely the result of thermodynamics: it is a consequence of the fact that modal structure of the universe must admit only processes which cannot give rise to contradictions. We appeal to the process matrix formalism developed in the field of quantum foundations to characterise processes which are compatible with local free will whilst ruling out contradictions, and argue that this gives rise to ‘consistent chaining’ requirements that explain the temporal asymmetry of influence. We compare this view to the perspectival account of causation advocated by Price and Ramsey.

Experimental super-Heisenberg quantum metrology with indefinite gate order

The precision of quantum metrology is widely believed to be restricted by the Heisenberg limit, corresponding to a root mean square error that is inversely proportional to the number of independent processes probed in an experiment, N. In the past, some proposals have challenged this belief, for example using non-linear interactions among the probes. However, these proposals turned out to still obey the Heisenberg limit with respect to other relevant resources, such as the total energy of the probes. Here, we present a photonic implementation of a quantum metrology protocol surpassing the Heisenberg limit by probing two groups of independent processes in a superposition of two alternative causal orders. Each process creates a phase space displacement, and our setup is able to estimate a geometric phase associated to two sets of N displacements with an error that falls quadratically with N. Our results only require a single-photon probe with an initial energy that is independent of N. Using a superposition of causal orders outperforms every setup where the displacements are probed in a definite order. Our experiment features the demonstration of indefinite causal order in a continuous-variable system, and opens up the experimental investigation of quantum metrology setups boosted by indefinite causal order.

On the Inevitable Lightness of Vacuum

In this essay, we present a new understanding of the cosmological constant problem, built upon the realization that the vacuum energy density can be expressed in terms of a phase space volume. We introduce a UV-IR regularization which implies a relationship between the vacuum energy and entropy. Combining this insight with the holographic bound on entropy then yields a bound on the cosmological constant consistent with observations. It follows that the universe is large, and the cosmological constant is naturally small, because the universe is filled with a large number of degrees of freedom.

Entanglement, causality and quantum networks

Quantum nonlocality, generated by strong correlations between entangled systems, defies the classical view of nature based on standard causal reasoning plus physical assumptions. The new frontier of the research on entanglement is to explore quantum correlations in complex networks, involving several parties and generating new striking quantum effects. We present recent advances on the realization of photonic quantum networks.

Quantum mechanics and Alexander Bogdanov’s worldview: A conversation

This paper is a transcript of the dialogue between Carlo Rovelli and Mike Jackson after Rovelli’s delivery of the 2021 Annual Mike Jackson Lecture, hosted by the Centre for Systems Studies at the University of Hull. The dialogue covers a range of topics, including how Rovelli developed a sense of curiosity in his youth; the connection between his interests in science and politics; the pathology of disciplinary divisions in academia; the value of Bogdanov’s transdisciplinarity; Rovelli’s theory of quantum gravity; the notions of granularity, indeterminism and relationality underpinning quantum mechanics; the role of the observer; mistaken uses of quantum mechanics; relational and network views of the world; how the discipline of Physics is becoming more systemic; the concept of levels of analysis in relation to nature and human inquiry; and the future for humanity.

Emergence of Riemannian Quantum Geometry

In this chapter we take up the quantum Riemannian geometry of a spatial slice of spacetime. While researchers are still facing the challenge of observing quantum gravity, there is a geometrical core to loop quantum gravity that does much to define the approach. This core is the quantum character of its geometrical observables: space and spacetime are built up out of Planck-scale quantum grains. The interrelations between these grains are described by spin networks, graphs whose edges capture the bounding areas of the interconnected nodes, which encode the extent of each grain. We explain how quantum Riemannian geometry emerges from two different approaches: in the first half of the chapter we take the perspective of continuum geometry and explain how quantum geometry emerges from a few principles, such as the general rules of canonical quantization of field theories, a classical formulation of general relativity in which it appears embedded in the phase space of Yang-Mills theory, and general covariance. In the second half of the chapter we show that quantum geometry also emerges from the direct quantization of the finite number of degrees of freedom of the gravitational field encoded in discrete geometries. These two approaches are complimentary and are offered to assist readers with different backgrounds enter the compelling arena of quantum Riemannian geometry.